Pressure-Induced Structural Phase Transitions in the Chromium Spinel LiInCr4O8 with Breathing Pyrochlore Lattice
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Ambient Pressure Results
3.2. High-Pressure Results
3.2.1. X-ray Diffraction Measurements
3.2.2. Raman Spectroscopy Measurements
3.2.3. Infrared Spectroscopy Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, Q.; Yan, Z.; Chen, C.; Chen, J. Spinels: Controlled Preparation, Oxygen Reduction/Evolution Reaction Application, and Beyond. Chem. Rev. 2017, 117, 10121–10211. [Google Scholar] [CrossRef] [PubMed]
- Stefan, E.; Irvine, J.T.S. Synthesis and characterization of chromium spinels as potential electrode support materials for intermediate temperature solid oxide fuel cells. J. Mater. Sci. 2011, 46, 7191–7197. [Google Scholar] [CrossRef]
- Kim, D.C.; Ihm, S.K. Application of Spinel-Type Cobalt Chromite as a Novel Catalyst for Combustion of Chlorinated Organic Pollutants. Environ. Sci. Technol. 2000, 35, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Joubert, J.C.; Durif, A. Étude de quelques composés spinelles nouveaux possédant un ordre des cations du type 1/1 sur les sites tétraédriques. Bull. Soc. Française Min. Cristallogr. 1966, 89, 26. [Google Scholar] [CrossRef]
- Okamoto, Y.; Nilsen, G.J.; Attfield, J.P.; Hiroi, Z. Breathing Pyrochlore Lattice Realized in A-Site Ordered Spinel Oxides LiGaCr4O8 and LiInCr4O8. Phys. Rev. Lett. 2013, 110, 097203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, Y.; Yoshida, M.; Takigawa, M.; Okamoto, Y.; Hiroi, Z. Novel Phase Transitions in the Breathing Pyrochlore Lattice: Li-NMR7 on LiInCr4O8 and LiGaCr4O8. Phys. Rev. Lett. 2014, 113, 227204. [Google Scholar] [CrossRef] [Green Version]
- Nilsen, G.J.; Okamoto, Y.; Masuda, T.; Carvajal, J.R.; Mutka, H.; Hansen, T.; Hiroi, Z. Complex magnetostructural order in the frustrated spinel LiInCr4O8. Phys. Rev. B 2015, 91, 174435. [Google Scholar] [CrossRef]
- Saha, R.; Fauth, F.; Avdeev, M.; Kayser, P.; Kennedy, B.J.; Sundaresan, A. Magnetodielectric effects in A-site cation-ordered chromate spinels LiMCr4O8 (M=Ga and In). Phys. Rev. B 2016, 94, 064420. [Google Scholar] [CrossRef]
- Saha, R.; Dhanya, R.; Bellin, C.; Béneut, K.; Bhattacharyya, A.; Shukla, A.; Narayana, C.; Suard, E.; Carvajal, J.R.; Sundaresan, A. Magnetostructural coupling and magnetodielectric effects in the A -site cation-ordered spinel LiFeCr4O8. Phys. Rev. B 2017, 96, 214439. [Google Scholar] [CrossRef]
- Dewaele, A.; Loubeyre, P.; Mezouar, M. Equations of state of six metals above 94 GPa. Phys. Rev. B 2004, 70, 094112. [Google Scholar] [CrossRef]
- Takemura, K.; Dewaele, A. Isothermal equation of state for gold with a He-pressure medium. Phys. Rev. B 2008, 78, 104119. [Google Scholar] [CrossRef]
- Klotz, S.; Chervin, J.C.; Munsch, P.; Marchand, G.L. Hydrostatic limits of 11 pressure transmitting media. J. Phys. D Appl. Phys 2009, 42, 075413. [Google Scholar] [CrossRef]
- Hammersley, A.P.; Svensson, S.O.; Hanfland, M.; Fitch, A.N.; Hausermann, D. Two-dimensional detector software: From real detector to idealised image or two-theta scan. High Press. Res. 1996, 14, 235. [Google Scholar] [CrossRef]
- Toby, B.H. EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 2001, 34, 210. [Google Scholar] [CrossRef] [Green Version]
- Mao, H.K.; Xu, J.; Bell, P.M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J. Geophys. Res. 1986, 91, 4673. [Google Scholar] [CrossRef]
- Celeste, A.; Borondics, F.; Capitani, F. Hydrostaticity of pressure-transmitting media for high pressure infrared spectroscopy. High Press. Res. 2019, 39, 608. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953. [Google Scholar] [CrossRef] [Green Version]
- Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Nardelli, M.B.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Condens. Matter Phys. 2017, 29, 465901. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [Green Version]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188. [Google Scholar] [CrossRef]
- Lazzeri, M.; Mauri, F. First-Principles Calculation of Vibrational Raman Spectra in Large Systems: Signature of Small Rings in CrystallineSiO2. Phys. Rev. Lett. 2003, 90, 036401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Troullier, N.; Martins, J.L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 1991, 43, 1993. [Google Scholar] [CrossRef] [PubMed]
- Mougin, J.; LeBihan, T.; Lucazeau, G. High-pressure study of Cr2O3 obtained by high-temperature oxidation by X-ray diffraction and Raman spectroscopy. J. Phys. Chem. Solids 2001, 62, 553. [Google Scholar] [CrossRef]
- Todorov, N.D.; Abrashev, M.V.; Russev, S.C.; Marinova, V.; Nikolova, R.P.; Shivachev, B.L. Raman spectroscopy and lattice-dynamical calculations of Sc3CrO6 single crystals. Phys. Rev. B 2012, 85, 214301. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Liu, H.; Bian, J.; Xiong, W.; Zhu, S.; Zong, B.; Shi, B.; Fang, B. Structural and Magnetic Properties of the Breathing Pyrochlore LiInCr4-xFexO8. Phys. Status Solidi B 2020, 257, 1900685. [Google Scholar] [CrossRef]
- Schaftenaar, G.; Noordik, J.H. Molden: A pre- and post-processing program for molecular and electronic structures. J. Comput. Aided Mol. Des. 2000, 14, 123. [Google Scholar] [CrossRef] [PubMed]
- Pokharel, G.; May, A.F.; Parker, D.S.; Calder, S.; Ehlers, G.; Huq, A.; Kimber, S.A.J.; Arachchige, H.S.; Poudel, L.; McGuire, M.A.; et al. Negative thermal expansion and magnetoelastic coupling in the breathing pyrochlore lattice material LiGaCr4S8. Phys. Rev. B 2018, 97, 134117. [Google Scholar] [CrossRef] [Green Version]
- Ohgushi, K.; Okimoto, Y.; Ogasawara, T.; Miyasaka, S.; Tokura, Y. Magnetic, Optical, and Magnetooptical Properties of Spinel-Type ACr2X4 (A = Mn, Fe, Co, Cu, Zn, Cd; X = O, S, Se). J. Phys. Soc. Japan 2008, 77, 034713. [Google Scholar] [CrossRef]
- Brik, M.; Avram, N.M.; Avram, C.N. Crystal field analysis of energy level structure of the Cr2O3 antiferromagnet. Solid State Commun. 2004, 132, 831. [Google Scholar] [CrossRef]
- Brik, M. Crystal Field Analysis, Electron-Phonon Coupling and Spectral Band Shape Modeling in MgO:Cr3. Z. Naturforschung A 2005, 60, 437. [Google Scholar] [CrossRef]
- Larsen, P.K.; Wittekoek, S. Photoconductivity and Luminescence Caused by Band-Band and by Cr3 Crystal Field Absorptions in CdCr2S4. Phys. Rev. Lett. 1972, 29, 1597. [Google Scholar] [CrossRef]
- Rabia, K.; Baldassarre, L.; Deisenhofer, J.; Tsurkan, V.; Kuntscher, C.A. Evolution of the optical properties of chromium spinels CdCr2O4, HgCr2S4 and ZnCr2Se4 under high pressure. Phys. Rev. B 2014, 89, 125107. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M.; Wang, Z.; Kant, C.; Mayr, F.; Toth, S.; Islam, A.T.M.N.; Lake, B.; Tsurkan, V.; Loidl, A.; Deisenhofer, J. Exciton-magnon transitions in the frustrated chromium antiferromagnets CuCrO2,α-CaCr2O4, CdCr2O4, and ZnCr2O4. Phys. Rev. B 2013, 87, 224424. [Google Scholar] [CrossRef] [Green Version]
- Rudolf, T.; Kant, C.; Mayr, F.; Schmidt, M.; Tsurkan, V.; Deisenhofer, J.; Loidl, A. Optical properties of ZnCr2Se4. Eur. Phys. J. B 2009, 68, 153. [Google Scholar] [CrossRef]
- Figgis, B.N.; Hitchman, M.A. Ligand Field Theory; John Wiley & Sons: Hoboken, NJ, USA, 1999. [Google Scholar]
- Jórgensen, C.K. Spectra and electronic structure of complexes with sulphur-containing ligands. Inorg. Chim. Acta. Rev. 1968, 2, 65. [Google Scholar] [CrossRef]
- Tarte, P. Effet isotopique 6Li-7Li dans le spectre infra-rouge de composes inorganiques du lithium-I. Carbonate, chromo-ferrite, tungstate, molybdate et nitrate de lithium. Spectrochim. Acta 1965, 21, 313. [Google Scholar] [CrossRef]
- Garg, A.B.; Errandonea, D.; Rodríguez-Hernández, P.; Muñoz, A. ScVO4 under non-hydrostatic compression: A new metastable polymorph. J. Phys. Condens. Matter 2016, 29, 055401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garg, A.B.; Errandonea, D.; Rodríguez-Hernández, P.; López-Moreno, S.; Muñoz, A.; Popescu, C. High-pressure structural behaviour of HoVO4: Combined XRD experiments and abinitio calculations. J. Phys. Condens. Matter 2014, 26, 265402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Errandonea, D.; Muñoz, A.; Gonzalez-Platas, J. Comment on “High-pressure x-ray diffraction study of YBO3/Eu3+, GdBO3 and EuBO3” [J. Appl. Phys. 115, 043507 (2014)]. J. Appl. Phys. 2014, 115, 216101. [Google Scholar] [CrossRef]
- Murnaghan, F.D. The Compressibility of Media under Extreme Pressures. Proc. Natl. Acad. Sci. USA 1944, 30, 244. [Google Scholar] [CrossRef]
- Catti, M.; Fava, F.F.; Zicovich, C.; Dovesi, R. High-pressure decomposition of MCr2O4 spinels (M = Mg, Mn, Zn) by ab initio methods. Phys. Chem. Miner. 1999, 26, 389. [Google Scholar] [CrossRef]
- Yong, W.; Botis, S.; Shieh, S.R.; Shi, W.; Withers, A.C. Pressure-induced phase transition study of magnesiochromite (MgCr2O4) by Raman spectroscopy and X-ray diffraction. Phys. Earth Planet. Inter. 2012, 196–197, 75. [Google Scholar] [CrossRef]
- Wang, Z.; OŃeill, H.; Lazor, P.; Saxena, S.K. High pressure Raman spectroscopic study of spinel MgCr2O4. J. Phys. Chem. Solids 2002, 63, 2057. [Google Scholar] [CrossRef]
- Wang, Z.; Lazor, P.; Saxena, S.K.; Artioli, G. High-Pressure Raman Spectroscopic Study of Spinel (ZnCr2O4). J. Solid State Chem. 2002, 165, 165. [Google Scholar] [CrossRef]
- Garg, A.; Errandonea, D.; Pellicer-Porres, J.; Martinez-Garcia, D.; Kesari, S.; Rao, R.; Popescu, C.; Bettinelli, M. LiCrO2 Under Pressure: In-Situ Structural and Vibrational Studies. Crystals 2018, 9, 2. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Gao, Z.; Ren, J. Anisotropic thermal expansion and thermodynamic properties of monolayer β-Te. Phys. Rev. B 2019, 99, 195436. [Google Scholar] [CrossRef] [Green Version]
- Kamali, K.; Ravindran, T.R.; Ravi, C.; Sorb, Y.; Subramanian, N.; Arora, A.K. Anharmonic phonons of NaZr2(PO4)3 studied by Raman spectroscopy, first-principles calculations, and x-ray diffraction. Phys. Rev. B 2012, 86, 144301. [Google Scholar] [CrossRef]
- Kanematsu, T.; Mori, M.; Okamoto, Y.; Yajima, T.; Takenaka, K. Thermal Expansion and Volume Magnetostriction in Breathing Pyrochlore Magnets LiACr4X8 (A = Ga, In, X = O, S). J. Phys. Soc. Japan 2020, 89, 073708. [Google Scholar] [CrossRef]
- Liang, A.; Turnbull, R.; Bandiello, E.; Yousef, I.; Popescu, C.; Hebboul, Z.; Errandonea, D. High-Pressure Spectroscopy Study of Zn(IO3)2 Using Far-Infrared Synchrotron Radiation. Crystals 2020, 11, 34. [Google Scholar] [CrossRef]
- Kuntscher, C.A.; Pashkin, A.; Hoffmann, H.; Frank, S.; Klemm, M.; Horn, S.; Schönleber, A.; van Smaalen, S.; Hanfland, M.; Glawion, S.; et al. Mott-Hubbard gap closure and structural phase transition in the oxyhalides TiOBr and TiOCl under pressure. Phys. Rev. B 2008, 78, 035106. [Google Scholar] [CrossRef]
Atoms | Wyckoff Sites | x | y | z | Occupancy | U |
---|---|---|---|---|---|---|
Li1 | 4a | 0.0000 | 0.0000 | 0.0000 | 0.9920 | 1.090 |
In1 | 4a | 0.0000 | 0.0000 | 0.0000 | 0.0080 | 0.350 |
Li2 | 4d | 0.7500 | 0.7500 | 0.7500 | 0.0080 | 1.090 |
In2 | 4d | 0.7500 | 0.7500 | 0.7500 | 0.9920 | 0.350 |
Cr | 16e | 0.3719 | 0.3719 | 0.3719 | 1.0000 | 0.140 |
O1 | 16e | 0.1377 | 0.1377 | 0.1377 | 1.0000 | 0.380 |
O2 | 16e | 0.6107 | 0.6107 | 0.6107 | 1.0000 | 0.180 |
Reported | Present | Simulations | ||
---|---|---|---|---|
from [5] | Study | LDA | GGA | |
Volume of | ||||
Primitive cell | 149.24 | 148.38 | 149.9925 | 149.0278 |
(Å) | ||||
distortion parameter | 1.051 | 1.05 | 1.32 | 1.33 |
(d/d) |
Modes | Raman | IR | ||||
---|---|---|---|---|---|---|
Assigned | Obs | LDA | GGA | Obs | LDA | GGA |
T | 165 (m) | 160 | 157 | - | 160 | 157 |
E | - | 245 | 244 | |||
T | 310 (m) | 300 | 294 | - | 300 | 294 |
A | - | 349 | 352 | |||
T | - | 359 | 368 | 406 | 359 | 368 |
E | - | 398 | 395 | |||
T | 444 (m) | 471 | 447 | 473 | 471 | 447 |
T | 461 (m) | 475 | 467 | 529 | 475 | 467 |
E | 491 (s) | 503 | 485 | |||
T | 582 (m) | 561 | 558 | 581 | 561 | 558 |
A | 591 (s) | 642 | 650 | |||
A | 718 (m) | 731 | 715 | |||
T | 739 (w) | 756 | 735 | 651 | 756 | 735 |
Modes | Free CrO Ion | Site Symmetry | Crystal Symmetry | |||
---|---|---|---|---|---|---|
(O) | (C) | (T) | ||||
→ | A | → | A | → | A | |
→ | E | → | E | → | E | |
→ | F | → | A+E | → | T | |
→ | F | → | A+E | → | T | |
→ | F | → | A+E | → | T | |
→ | F | → | A+E | → | T | |
→ | F | → | A+E | → | T | |
→ | F | → | A+E | → | T |
Atom | Wyckoff | x | y | z | Occupancy | U |
---|---|---|---|---|---|---|
Li1 | 4a | 0.0000 | 0.0000 | 0.0000 | 0.9920 | 0.0610 |
In1 | 4a | 0.0000 | 0.0000 | 0.0000 | 0.0080 | 0.0900 |
Li2 | 4d | 0.7500 | 0.7500 | 0.7500 | 0.0080 | 0.8000 |
In2 | 4d | 0.7500 | 0.7500 | 0.7500 | 0.9920 | 0.0636 |
Cr | 16e | 0.3719 | 0.3719 | 0.3719 | 1.0000 | 0.0064 |
O1 | 16e | 0.1377 | 0.1377 | 0.1377 | 1.0000 | 0.0301 |
O2 | 16e | 0.6107 | 0.6107 | 0.6107 | 1.0000 | 0.0671 |
Atoms | Wyckoff Sites | x | y | z | Occupancy | U |
---|---|---|---|---|---|---|
Li | 2a | 0.0000 | 0.0000 | 0.0000 | 1.0000 | 0.0224 |
In | 2d | 0.0000 | 0.5000 | 0.7500 | 1.0000 | 0.0875 |
Cr | 8i | 0.2607 | 0.0000 | 0.6272 | 1.0000 | 0.0067 |
O1 | 8i | 0.2840 | 0.0000 | 0.6340 | 1.0000 | 0.0029 |
O2 | 8i | 0.2510 | 0.0000 | 0.1080 | 1.0000 | 0.0069 |
Observed Pressure | Modes | (d/dP) | ||
---|---|---|---|---|
GPa | (cm) | (cmGPa) | ||
Amb | M | 165 | 0.21 | 0.23 |
“ | M | 310 | 0.90 | 0.51 |
“ | M | 444 | 2.67 | 1.06 |
“ | M | 461 | 0.04 | 0.40 |
“ | M | 491 | 3.02 | 1.09 |
“ | M | 582 | 1.36 | 0.41 |
“ | M | 591 | 3.35 | 1.00 |
“ | M | 718 | 5.82 | 1.43 |
“ | M | 739 | 4.28 | 1.02 |
0.4 | M | 468 | 3.92 | 1.48 |
0.4 | M | 555 | 3.45 | 1.10 |
2.5 | M | 584 | 2.81 | 0.85 |
14.5 | M | 469 | −0.25 | −0.09 |
“ | M | 482 | 1.47 | 0.54 |
“ | M | 536 | 1.62 | 0.53 |
“ | M | 601 | 1.59 | 0.47 |
“ | M | 640 | 2.09 | 0.58 |
“ | M | 802 | 2.79 | 0.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varma, M.; Krottenmüller, M.; Poswal, H.K.; Kuntscher, C.A. Pressure-Induced Structural Phase Transitions in the Chromium Spinel LiInCr4O8 with Breathing Pyrochlore Lattice. Crystals 2023, 13, 170. https://doi.org/10.3390/cryst13020170
Varma M, Krottenmüller M, Poswal HK, Kuntscher CA. Pressure-Induced Structural Phase Transitions in the Chromium Spinel LiInCr4O8 with Breathing Pyrochlore Lattice. Crystals. 2023; 13(2):170. https://doi.org/10.3390/cryst13020170
Chicago/Turabian StyleVarma, Meera, Markus Krottenmüller, H. K. Poswal, and C. A. Kuntscher. 2023. "Pressure-Induced Structural Phase Transitions in the Chromium Spinel LiInCr4O8 with Breathing Pyrochlore Lattice" Crystals 13, no. 2: 170. https://doi.org/10.3390/cryst13020170
APA StyleVarma, M., Krottenmüller, M., Poswal, H. K., & Kuntscher, C. A. (2023). Pressure-Induced Structural Phase Transitions in the Chromium Spinel LiInCr4O8 with Breathing Pyrochlore Lattice. Crystals, 13(2), 170. https://doi.org/10.3390/cryst13020170