Lyotropic Liquid Crystal System for Drug Delivery of Astaxanthin: Physical Characterization and Enhanced Antioxidant Potential
Abstract
:1. Introduction
2. Materials and Methods
3. Preparation Method of Cubosomes
4. Physicochemical Study of Astaxanthin-Loaded Cubosomes (AST-LC)
4.1. Physicochemical Characterization of Astaxanthin-Loaded Cubosomes
4.1.1. Visual Examination
4.1.2. Percentage Yield and Entrapment Efficiency
4.1.3. Determination of Particle Size, Zeta Potential, and Polydispersity Index (PDI)
4.1.4. Optical Microscopic View of the Cubosomes
4.1.5. Field Emission Electron Microscopy (FESEM)
4.1.6. High Resolution Transmission Electron Microscope (HRTEM)
4.1.7. Diffraction Scanning Calorimetry (DSC)
4.1.8. Powder X-ray Diffraction
4.1.9. Fourier Transformed Infrared (FTIR) Spectroscopy
5. In Vitro Release and Evaluation of the Release Mechanism
- Zero-order model: Q = K0t + Q0
- First order model: Q = Q0ek1t
- Higuchi model: Q = kHt1/2
- Korsmeyer–Peppas model: Q = kKPtn
6. Anti-Oxidant Activity
DPPH Radical Scavenging Activity
7. Result and Discussion
7.1. Percentage Practical Yield and Entrapment Efficiency
7.2. Particle Size and Polydispersity Index
7.3. Microscopic View of the Cubosomes
7.4. FESEM of Astaxanthin-Loaded Cubosome (AST-LC)
7.5. High Resolution Transmission Electron Microscopy (HRTEM)
7.6. Diffraction Scanning Calorimetry Thermogram
7.7. Powder X-ray Diffraction
7.8. Fourier Transformed Infrared (FTIR) Spectroscopy
7.9. In Vitro Release Study
7.10. DPPH Radical Scavenging Activity
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumari, S.; Goyal, A.; Garg, M. Phytochemistry and Pharmacological Update on Tetraterpenoids. Nat. Prod. J. 2021, 11, 617–628. [Google Scholar] [CrossRef]
- Li, X.; Matsumoto, T.; Takuwa, M.; Ali, M.S.E.S.; Hirabashi, T.; Kondo, H.; Fujino, H. Protective effects of astaxanthin supplementation against ultraviolet-induced photoaging in hairless mice. Biomedicines 2020, 8, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuyen, H.V.; Eun, J.-B. Marine carotenoids: Bioactivities and potential benefits to human health. Crit. Rev. Food Sci. Nutr. 2017, 57, 2600–2610. [Google Scholar] [CrossRef] [PubMed]
- Mano, C.M.; Guaratini, T.; Cardozo, K.H.; Colepicolo, P.; Bechara, E.J.; Barros, M.P. Astaxanthin restrains nitrative-oxidative peroxidation in mitochondrial-mimetic liposomes: A pre-apoptosis model. Mar. Drugs 2018, 16, 126. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Liu, Z.; Sun, X.; Zhang, S.; Wang, S.; Feng, F.; Wang, D.; Xu, Y. Fabrication and characterization of β-lactoglobulin-based nanocomplexes composed of chitosan oligosaccharides as vehicles for delivery of astaxanthin. J. Agric. Food Chem. 2018, 66, 6717–6726. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Chen, Y.; Tong, L.; Wang, X.; Yu, D.; Wu, H. Astaxanthin-loaded polymer-lipid hybrid nanoparticles (ATX-LPN): Assessment of potential otoprotective effects. J. Nanobiotech. 2020, 18, 53. [Google Scholar]
- Bustos-Garza, C.; Yáñez-Fernández, J.; Barragán-Huerta, B.E. Thermal and pH stability of spray-dried encapsulated astaxanthin oleoresin from Haematococcuspluvialis using several encapsulation wall materials. Food Res. Int. 2013, 54, 641–649. [Google Scholar] [CrossRef]
- Kumari, S.; Goyal, A.; Sönmez Gürer, E.; AlgınYapar, E.; Garg, M.; Sood, M.; Sindhu, R.K. Bioactive Loaded Novel Nano-Formulations for Targeted Drug Delivery and Their Therapeutic Potential. Pharmaceutics 2022, 14, 1091. [Google Scholar] [CrossRef]
- Tamjidi, F.; Shahedi, M.; Varshosaz, J.; Nasirpour, A. Design and characterization of astaxanthin-loaded nanostructured lipid carriers. Innov. Food Sci. Emerg. Technol. 2014, 26, 366–374. [Google Scholar] [CrossRef]
- Santonocito, D.; Raciti, G.; Campisi, A.; Sposito, G.; Panico, A.; Siciliano, E.A.; Sarpietro, M.; Damiani, E.; Puglia, C. Astaxanthin-loaded stealth lipid nanoparticles (AST-SSLN) as potential carriers for the treatment of alzheimer’s disease: Formulation development and optimization. Nanomaterials 2021, 11, 391. [Google Scholar] [CrossRef]
- Kumari, S.; Goyal, A.; Garg, M. Phytoconstituents Based Novel Nano-Formulations: An Approach. ECS Transact. 2022, 107, 7365. [Google Scholar] [CrossRef]
- Hong, L.; Zhou, C.L.; Chen, F.P.; Han, D.; Wang, C.Y.; Li, J.X.; Chi, Z.; Liu, C.-G. Development of a carboxymethyl chitosan functionalized nanoemulsion formulation for increasing aqueous solubility, stability and skin permeability of astaxanthin using low-energy method. J. Microencapsul. 2017, 34, 707–721. [Google Scholar] [CrossRef] [PubMed]
- Higuera-Ciapara, I.; Felix-Valenzuela, L.; Goycoolea, F.; Argüelles-Monal, W. Microencapsulation of astaxanthin in a chitosan matrix. Carbohydr. Polym. 2004, 56, 41–45. [Google Scholar] [CrossRef]
- Feng, X.; Chen, A.; Zhang, Y.; Wang, J.; Shao, L.; Wei, L. Central nervous system toxicity of metallic nanoparticles. Int. J. Nanomed. 2015, 10, 4321. [Google Scholar]
- Anarjan, N.; Tan, C.P.; Nehdi, I.A.; Ling, T.C. Colloidal astaxanthin: Preparation, characterisation and bioavailability evaluation. Food Chem. 2012, 135, 1303–1309. [Google Scholar] [CrossRef]
- Garg, M.; Goyal, A.; Kumari, S. An Update on the Recent Advances in Cubosome: A Novel Drug Delivery System. Curr. Drug Metab. 2021, 22, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Almoshari, Y. Development, Therapeutic Evaluation and Theranostic Applications of Cubosomes on Cancers: An Updated Review. Pharmaceuticals 2022, 14, 600. [Google Scholar] [CrossRef]
- Mathews, P.D.; Mertins, O.; Angelov, B.; Angelova, A. Cubosomal lipid nanoassemblies with pH-sensitive shells created by biopolymer complexes: A synchrotron SAXS study. J. Colloid Interface Sci. 2022, 607, 440–450. [Google Scholar] [CrossRef]
- Bei, D.; Marszalek, J.; Youan, B.-B.C. Formulation of dacarbazine-loaded cubosomes—Part II: Influence of process parameters. AAPS Pharm. Sci. Tech. 2009, 10, 1040–1047. [Google Scholar] [CrossRef] [Green Version]
- Kadawala, M.; Rao, L.; Sharma, L.; Sharma, V. Insights into the Recent Advancements in the Vibrant Area of Cubosomes Nanoparticles based Drug Delivery. Int. J. Nanobiotech. 2021, 7, 24–34. [Google Scholar]
- Azman, K.A.K.; Seong, F.C.; Singh, G.K.S.; Affandi, M.M.R.M.M. Physicochemical characterization of astaxanthin-loaded PLGA formulation via nanoprecipitation technique. J. Appl. Pharm. Sci. 2021, 11, 05661. [Google Scholar]
- Peng, X.; Zhou, Y.; Han, K.; Qin, L.; Dian, L.; Li, G.; Pan, X.; Wu, C. Characterization of cubosomes as a targeted and sustained transdermal delivery system for capsaicin. Drug Des. Devel. Ther. 2015, 9, 4209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Treuel, L.; Eslahian, K.; Docter, D.; Lang, T.; Zellner, R.; Nienhaus, K.; Nienhaus, G.U.; Stauber, R.H.; Maskos, M. Physicochemical characterization of nanoparticles and their behavior in the biological environment. Phys. Chem. Chem 2014, 16, 15053–15067. [Google Scholar] [CrossRef] [PubMed]
- Weng, J.; Tong, H.H.; Chow, S.F. In vitro release study of the polymeric drug nanoparticles: Development and validation of a novel method. Pharmaceuticals 2020, 12, 732. [Google Scholar] [CrossRef]
- Swami, H.; Bilandi, A.; Kataria, M.K.; Kaur, K. Formulation and evaluation of liposomal gel of lornoxicam. World J. Pharm. Res. 2015, 4, 2312–2338. [Google Scholar]
- Singh, S.; Arora, S.; Allawadi, D. Formulation, optimization and evaluation of sustained release microspheres using Taguchi design. J. Pharm. Technol. Res. 2014, 2, 1–12. [Google Scholar] [CrossRef]
- Eldeeb, A.E.; Salah, S.; Ghorab, M. Formulation and evaluation of cubosomes drug delivery system for treatment of glaucoma: Ex-vivo permeation and in-vivo pharmacodynamic study. J. Drug Deliv. Sci. Technol. 2019, 52, 236–247. [Google Scholar] [CrossRef]
- Spicer, P.T.; Small, W.B.; Lynch, M.L.; Burns, J.L. Dry powder precursors of cubic liquid crystalline nanoparticles (cubosomes). J. Nanopart. Res. 2002, 4, 297–311. [Google Scholar] [CrossRef]
- Rizwan, S.; Dong, Y.D.; Boyd, B.J.; Rades, T.; Hook, S. Characterisation of bicontinuous cubic liquid crystalline systems of phytantriol and water using cryo field emission scanning electron microscopy (cryo FESEM). Micron 2007, 38, 478–485. [Google Scholar] [CrossRef]
- Shalaby, R.A.; El-Gazayerly, O.; Abdallah, M. Cubosomal Betamethasone-Salicylic Acid Nano Drug Delivery System for Enhanced Management of Scalp Psoriasis. Int. J. Nanomed. 2022, 17, 1659. [Google Scholar] [CrossRef]
- Nasr, M.; Ghorab, M.K.; Abdelazem, A. In vitro and in vivo evaluation of cubosomes containing 5-fluorouracil for liver targeting. Acta Pharm. Sin. B 2015, 5, 79–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.Y.; Zhang, J.; Zheng, L.Q.; Li, D.H. Studies of cubosomes as a sustained drug delivery system. J. Dispers. Sci. Techn. 2005, 25, 795–799. [Google Scholar] [CrossRef]
- Singh, I.; Rana, V. Iron oxide induced enhancement of mucoadhesive potential of Eudragit RLPO: Formulation, evaluation and optimization of mucoadhesive drug delivery system. Expert. Opin. Drug Deliv. 2013, 10, 1179–1191. [Google Scholar] [CrossRef]
- Baggi, R.B.; Kilaru, N.B. Calculation of predominant drug release mechanism using Peppas-Sahlin model, Part-I (substitution method): A linear regression approach. Asian J. Pharm. Technol. 2016, 6, 223–230. [Google Scholar] [CrossRef]
- Prieto, J.M. Procedure: Preparation of DPPH Radical, and antioxidant scavenging assay. DPPH Microplate Protoc. 2012, 2012, 7–9. [Google Scholar]
- Kurechi, T.; Kikugawa, K.; Kato, T. Studies on the antioxidants. XIII. Hydrogen donating capability of antioxidants to 2, 2-diphenyl-1-picrylhydrazyl. Chem. Pharm. Bull 1980, 28, 2089–2093. [Google Scholar]
- Kaur, V.; Pawa, R.P. Formulation and evaluation of moxifloxacin hydrochloride niosomes for controlled ophthalmic drug delivery. J. Pharm. Technol. Res. Manag. 2015, 3, 11–28. [Google Scholar] [CrossRef]
Formulation | Zero-Order | First-Order | Higuchi | Korsmeyer–Peppas | Hixon–Crowell | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AST-LC | r2 | k0 | r2 | k1 | r2 | kH | r2 | n | kKP | r2 | kHC |
0.777 | 2.538 | 0.9364 | −0.060 | 0.9479 | 18.462 | 0.8013 | 0.77 | 1.0215 | 0.9449 | −0.103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumari, S.; Goyal, A.; Garg, M.; Antonescu, A.; Sindhu, R.K. Lyotropic Liquid Crystal System for Drug Delivery of Astaxanthin: Physical Characterization and Enhanced Antioxidant Potential. Crystals 2023, 13, 142. https://doi.org/10.3390/cryst13010142
Kumari S, Goyal A, Garg M, Antonescu A, Sindhu RK. Lyotropic Liquid Crystal System for Drug Delivery of Astaxanthin: Physical Characterization and Enhanced Antioxidant Potential. Crystals. 2023; 13(1):142. https://doi.org/10.3390/cryst13010142
Chicago/Turabian StyleKumari, Sapna, Anju Goyal, Madhukar Garg, Angela Antonescu, and Rakesh K. Sindhu. 2023. "Lyotropic Liquid Crystal System for Drug Delivery of Astaxanthin: Physical Characterization and Enhanced Antioxidant Potential" Crystals 13, no. 1: 142. https://doi.org/10.3390/cryst13010142
APA StyleKumari, S., Goyal, A., Garg, M., Antonescu, A., & Sindhu, R. K. (2023). Lyotropic Liquid Crystal System for Drug Delivery of Astaxanthin: Physical Characterization and Enhanced Antioxidant Potential. Crystals, 13(1), 142. https://doi.org/10.3390/cryst13010142