Ultrafast L Band Soliton Pulse Generation in Erbium-Doped Fiber Laser Based on Graphene Oxide Saturable Absorber
Abstract
:1. Introduction
2. Synthesis and Characterization of GO-PEO Film as Saturable Absorber
3. Generation of Soliton Pulses with GO-PEO Film as Saturable Absorber
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bao, Q.L.; Zhang, H.; Wang, Y.; Ni, Z.H.; Yan, Y.L.; Shen, Z.X.; Loh, K.P.; Tang, D.Y. Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers. Adv. Funct. Mater. 2009, 19, 3077–3083. [Google Scholar] [CrossRef]
- Sobon, G.; Sotor, J.; Pasternak, I.; Krajewska, A.; Strupinski, W.; Abramski, K.M. Multilayer graphene-based saturable absorbers with scalable modulation depth for mode-locked Er-and Tm-doped fiber lasers. Opt. Mater. Express 2015, 5, 2884–2894. [Google Scholar] [CrossRef]
- Zhang, H.; Bao, Q.L.; Tang, D.Y.; Zhao, L.M.; Loh, K. Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker. Appl. Phys. Lett. 2009, 95, 141103. [Google Scholar] [CrossRef]
- Popa, D.; Sun, Z.; Torrisi, F.; Hasan, T.; Wang, F.; Ferrari, A.C. Sub 200 fs pulse generation from a graphene mode-locked fiber laser. Appl. Phys. Lett. 2010, 97, 203106. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Hasan, T.; Torrisi, F.; Popa, D.; Privitera, G.; Wang, F.; Bonaccorso, F.; Basko, D.M.; Ferrari, A.C. Graphene mode-locked ultrafast laser. ACS Nano 2010, 4, 803–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sotor, J.; Sobon, G.; Abramski, K.M. Scalar soliton generation in all-polarization-maintaining, graphene mode-locked fiber laser. Opt. Lett. 2012, 37, 2166–2168. [Google Scholar] [CrossRef]
- Bouma, B.E.; Nelson, L.E.; Tearney, G.J.; Jones, D.J.; Brezinski, M.E.; Fujimoto, J.G. Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.8 μm using Er-and Tm-doped fiber sources. J. Biomed. Opt. 1998, 3, 76–79. [Google Scholar] [CrossRef]
- Hendow, S.T.; Shakir, S.A. Structuring materials with nanosecond laser pulses. Opt. Express 2010, 18, 10188–10199. [Google Scholar] [CrossRef]
- Keller, U. Recent developments in compact ultrafast lasers. Nature 2003, 424, 831–838. [Google Scholar] [CrossRef]
- Haris, H.; Batumalay, M.; Tan, S.J.; Markom, A.M.; Muhammad, A.R.; Harun, S.W.; Megat Hasnan, M.M.I.; Saad, I. Mode-Locked YDFL Using Topological Insulator Bismuth Selenide Nanosheets as the Saturable Absorber. Crystals 2022, 12, 489. [Google Scholar] [CrossRef]
- Haris, H.; Muhammad, A.; Tan, S.; Markom, A.; Harun, S.; Hasnan, M.M.; Saad, I. Generation of Kelly and dip type sidebands soliton employing Topological insulator (Bi2Te3) as saturable absorber. Infrared Phys. Technol. 2022, 123, 104154. [Google Scholar] [CrossRef]
- Shang, X.; Xu, N.; Zhang, H.; Li, D. Nonlinear photoresponse of high damage threshold titanium disulfide nanocrystals for Q-switched pulse generation. Opt. Laser Technol. 2022, 151, 107988. [Google Scholar] [CrossRef]
- Zhao, R.; Li, J.; Zhang, B.; Li, X.; Su, X.; Wang, Y.; Lou, F.; Zhang, H.; He, J. Triwavelength synchronously mode-locked fiber laser based on few-layered black phosphorus. Appl. Phys. Express 2016, 9, 092701. [Google Scholar] [CrossRef]
- Sun, X.; Nie, H.; He, J.; Zhao, R.; Su, X.; Wang, Y.; Zhang, B.; Wang, R.; Yang, K. Passively mode-locked 1.34 μm bulk laser based on few-layer black phosphorus saturable absorber. Opt. Express 2017, 25, 20025–20032. [Google Scholar] [CrossRef]
- Wu, Q.; Jin, X.; Chen, S.; Jiang, X.; Hu, Y.; Jiang, Q.; Wu, L.; Li, J.; Zheng, Z.; Zhang, M. MXene-based saturable absorber for femtosecond mode-locked fiber lasers. Opt. Express 2019, 27, 10159–10170. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Xu, N.; Wen, Q. Ti2CTx (T=O, OH or F) nanosheets as new broadband saturable absorber for ultrafast photonics. J. Light. Technol. 2020, 38, 1975–1980. [Google Scholar] [CrossRef]
- Bao, X.; Mu, H.; Chen, Y.; Li, P.; Li, L.; Li, S.; Qasim, K.; Zhang, Y.; Zhang, H.; Bao, Q. Ytterbium-doped fiber laser passively mode locked by evanescent field interaction with CH3NH3SnI3 perovskite saturable absorber. J. Phys. D Appl. Phys. 2018, 51, 375106. [Google Scholar] [CrossRef] [Green Version]
- Xu, N.; Sun, S.; Shang, X.; Zhang, H.; Li, D. Harmonic and fundamental-frequency mode-locked operations in an Er-doped fiber laser using a Cr2Si2Te6-based saturable absorber. Opt. Mater. Express 2022, 12, 166–173. [Google Scholar] [CrossRef]
- Pang, L.; Sun, Z.; Zhao, Q.; Wang, R.; Yuan, L.; Wu, R.; Lv, Y.; Liu, W. Ultrafast Photonics of Ternary RexNb(1–x)S2 in Fiber Lasers. ACS Appl. Mater. Interfaces 2021, 13, 28721–28728. [Google Scholar] [CrossRef]
- Xu, J.; Liu, J.; Wu, S.; Yang, Q.H.; Wang, P. Graphene oxide mode-locked femtosecond erbium-doped fiber lasers. Opt. Express 2012, 20, 15474–15480. [Google Scholar] [CrossRef]
- Wu, J.; Jia, L.; Zhang, Y.; Qu, Y.; Jia, B.; Moss, D.J. Graphene oxide for integrated photonics and flat optics. Adv. Mater. 2021, 33, 2006415. [Google Scholar] [CrossRef]
- Huang, X.-M.; Liu, L.-Z.; Zhou, S.; Zhao, J.-J. Physical properties and device applications of graphene oxide. Front. Phys. 2020, 15, 33301. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Ruoff, R.S. Chemical methods for the production of graphenes. Nat. Nanotechnol. 2009, 4, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Dideikin, A.T.; Vul’, A.Y. Graphene oxide and derivatives: The place in graphene family. Front. Phys. 2019, 6, 149. [Google Scholar] [CrossRef]
- Xing, G.; Guo, H.; Zhang, X.; Sum, T.C.; Huan, C.H.A. The physics of ultrafast saturable absorption in graphene. Opt. Express 2010, 18, 4564–4573. [Google Scholar] [CrossRef]
- Sobon, G.; Sotor, J.; Jagiello, J.; Kozinski, R.; Zdrojek, M.; Holdynski, M.; Paletko, P.; Boguslawski, J.; Lipinska, L.; Abramski, K.M. Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser. Opt. Express 2012, 20, 19463–19473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hummers, W.S., Jr.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrari, A.C.; Basko, D.M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kudin, K.N.; Ozbas, B.; Schniepp, H.C.; Prud’Homme, R.K.; Aksay, I.A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008, 8, 36–41. [Google Scholar] [CrossRef]
- Lau, K.Y.; Liu, X.; Qiu, J. A Comparison for Saturable Absorbers: Carbon Nanotube Versus Graphene. Adv. Photonics Res. 2022, 2200023. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Y.; Yan, P.; Ruan, S.; Zhang, G.; Li, H.; Tsang, Y.H. An L-band graphene-oxide mode-locked fiber laser delivering bright and dark pulses. Laser Phys. 2013, 23, 075105. [Google Scholar] [CrossRef]
- Xu, J.; Wu, S.; Li, H.; Liu, J.; Sun, R.; Tan, F.; Yang, Q.-H.; Wang, P. Dissipative soliton generation from a graphene oxide mode-locked Er-doped fiber laser. Opt. Express 2012, 20, 23653–23658. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Koo, J.; Debnath, P.; Song, Y.; Lee, J. A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber. Laser Phys. Lett. 2013, 10, 035103. [Google Scholar] [CrossRef]
- Tsai, L.-Y.; Li, Z.-Y.; Lin, J.-H.; Song, Y.-F.; Zhang, H. Wavelength tunable passive-mode locked Er-doped fiber laser based on graphene oxide nano-platelet. Opt. Laser Technol. 2021, 140, 106932. [Google Scholar] [CrossRef]
- Liu, Z.-B.; He, X.; Wang, D. Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution. Opt. Lett. 2011, 36, 3024–3026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Tang, Y.; Yan, Z.; Wang, Y.; Meng, B.; Liang, G.; Sun, H.; Yu, X.; Zhang, Y.; Cheng, X. Broadband saturable absorption of graphene oxide thin film and its application in pulsed fiber lasers. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 441–447. [Google Scholar]
- Markom, A.; Tan, S.; Haris, H.; Paul, M.; Dhar, A.; Das, S.; Harun, S. Experimental Observation of Bright and Dark Solitons Mode-Locked with Zirconia-Based Erbium-Doped Fiber Laser. Chin. Phys. Lett. 2018, 35, 024203. [Google Scholar] [CrossRef]
Integration Method | Repetition Rate | Pulse Width | Threshold Pump Power | Pulse Profile, Pulse Center Wavelength and 3 dB Bandwidth | Maximum Output Power | Ref |
---|---|---|---|---|---|---|
Fiber ferrule | 21.79 MHz | 770 fs | 98 mW | Soliton, 1596 nm, 4.454 nm | 0.85 mW | [32] |
Mirror | 19.5 MHz | 11 ps | 139 mW | Dissipative soliton, 1531 nm, 6.5 nm | 2.23 mW | [33] |
D-shape fiber | 14.64 MHz | 780 fs | 162 mW | Soliton, 1555.9 ns, 3.73 nm | 0.36 mW | [34] |
Fiber ferrule | 9.4 MHz (fundamental) 37.7 MHz (Harmonic) | 1.2 ps 1.2 ps | 80 mW | Soliton, 1571 nm, 3.9 nm Soliton, 1560 nm, 4.8 nm | - | [35] |
Photonic Crystal Fiber | 7.68 MHz (fundamental) 76.8 MHz (Harmonic) | 4.83 ns | 38 mW | Dissipative soliton, 1561.2 nm, 0.11 nm | 4.3 mW | [36] |
Fiber ferrule | 40.32 MHz | 750.5 fs | 80 mW | Soliton, 1559.60 nm, 3.8 nm | - | [37] |
Mirror | 22.9 MHz | 0.2 ps | 27 mW | Soliton, 1560 nm | 5.8 mW | [20] |
Fused silica plates | 58 MHz | 390 fs | 92 mW | Soliton, 1558 nm, 9.3 nm | 1.96 mW | [26] |
Fiber ferrule | 13.9 MHz | 0.6 ps | 78 mW | Soliton, 1577.46 nm, 5.4 nm | 38.1 uW | [38] |
Fiber ferrule | 22 MHz | 0.8 ps | 39.0 mW | Soliton, 1565.2 nm, 5.6 nm | 3.37 mW | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haris, H.; Batumalay, M.; Jin, T.S.; Muhammad, A.R.; Markom, A.M.; Anyi, C.L.; Izani, M.H.; Razak, M.Z.A.; Megat Hasnan, M.M.I.; Saad, I. Ultrafast L Band Soliton Pulse Generation in Erbium-Doped Fiber Laser Based on Graphene Oxide Saturable Absorber. Crystals 2023, 13, 141. https://doi.org/10.3390/cryst13010141
Haris H, Batumalay M, Jin TS, Muhammad AR, Markom AM, Anyi CL, Izani MH, Razak MZA, Megat Hasnan MMI, Saad I. Ultrafast L Band Soliton Pulse Generation in Erbium-Doped Fiber Laser Based on Graphene Oxide Saturable Absorber. Crystals. 2023; 13(1):141. https://doi.org/10.3390/cryst13010141
Chicago/Turabian StyleHaris, Hazlihan, Malathy Batumalay, Tan Sin Jin, Ahmad Razif Muhammad, Arni Munira Markom, Caroline Livan Anyi, Muhamad Hakim Izani, Mohd. Zulhakimi Ab. Razak, Megat Muhammad Ikhsan Megat Hasnan, and Ismail Saad. 2023. "Ultrafast L Band Soliton Pulse Generation in Erbium-Doped Fiber Laser Based on Graphene Oxide Saturable Absorber" Crystals 13, no. 1: 141. https://doi.org/10.3390/cryst13010141
APA StyleHaris, H., Batumalay, M., Jin, T. S., Muhammad, A. R., Markom, A. M., Anyi, C. L., Izani, M. H., Razak, M. Z. A., Megat Hasnan, M. M. I., & Saad, I. (2023). Ultrafast L Band Soliton Pulse Generation in Erbium-Doped Fiber Laser Based on Graphene Oxide Saturable Absorber. Crystals, 13(1), 141. https://doi.org/10.3390/cryst13010141