Mechanical Behavior and Thermal Stability of (AlCrTiZrMo)N/ZrO2 Nano-Multilayered High-Entropy Alloy Film Prepared by Magnetron Sputtering
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructures
3.2. Mechanical Properties
3.3. Thermal Stability
4. Discussion
4.1. Effect of Structures on Mechanical Properties of the (AlCrTiZrMo)N/ZrO2 Nano-Multilayered Film
4.2. Thermal Stability of the (AlCrTiZrMo)N/ZrO2 Nano-Multilayered Films
5. Conclusions
- (1)
- The (AlCrTiZrMo)N/ZrO2 nano-multilayered film presents an fcc structure. When the ZrO2 layer thickness increases, the peak intensity first increases and then decreases. When the thickness of the ZrO2 layer is less than 0.6 nm, the ZrO2 layers convert into a cubic structure and form a coherent interface with the (AlCrTiZrMo)N layer. When the thickness of the ZrO2 layer exceeds 0.6 nm, the fcc-structured ZrO2 layers transform back into a monoclinic structure, leading to the deterioration of the crystallization integrity.
- (2)
- When the film thickness of ZrO2 increases, the mechanical properties of the nano-multilayered film first increase and then decrease. When the ZrO2 film thickness is 0.6 nm, the maximum values of the hardness and elastic modulus are obtained, which are 35.1 GPa and 376.4 GPa, respectively. The strengthening effect can be attributed to the modulus difference between ZrO2 and (AlCrTiZrMo)N and the alternating stress field theory. The actual hardness is slightly lower than the theoretical hardness, which may be due to the structural transformation of the ZrO2 layers under the coherent structure in the film, resulting in a change in the modulus.
- (3)
- The (AlCrTiZrMo)N/ZrO2 nano-multilayered film presents high thermal stability. The mechanical properties of the (AlCrTiZrMo)N/ZrO2 film with the ZrO2 layer thickness of 0.6 nm after annealing at 900 °C for 30 min are nearly equivalent to those of the (AlCrTiZrMo)N film at room temperature. The high thermal stability can be attributed to the favorable thermal stability of the ZrO2 layer, the lattice distortion of (AlCrTiZrMo)N, and the nano-multilayered film structure.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Zhou, J.Y.; Zhang, Y.; Wang, F.J.; Chen, G.L. Phase transformation induced by lattice distortion in multiprincipal component CoCrFeNCuxAl1-x solid-solution alloys. Appl. Phys. Lett. 2008, 92, 241–917. [Google Scholar] [CrossRef]
- Zhang, Y.; Zuo, T.T.; Tang, Z.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014, 61, 1–93. [Google Scholar] [CrossRef]
- Youssef, K.M.; Zaddach, A.J.; Niu, C.N.; Irving, D.L.; Koch, C.C. A Novel Low-Density, High-Hardness, High-entropy Alloy with Close-packed Single-phase Nanocrystalline Structures. Mater. Res. Lett. 2014, 3, 95–99. [Google Scholar] [CrossRef] [Green Version]
- Gao, M.C.; Yeh, J.W.; Liaw, P.K.; Zhang, Y. High-Entropy Alloys: Fundamentals and Applications; Springer: Berlin, Germany, 2016. [Google Scholar]
- Zhao, J.Y.; Qiao, J.W.; Ma, S.G.; Gao, M.C.; Yang, H.J.; Chen, M.W.; Zhang, Y. A hexagonal close-packed high-entropy alloy: The effect of entropy. Mater. Des. 2016, 96, 10–15. [Google Scholar] [CrossRef]
- Senkov, O.N.; Senkova, S.V.; Woodward, C. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Mater. 2014, 68, 214–228. [Google Scholar] [CrossRef]
- Varalakshmi, S.; Kamaraj, M.; Murty, B.S. Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying. Mater. Sci. Eng. A 2010, 527, 1027–1030. [Google Scholar] [CrossRef]
- Yu, P.F.; Zhang, L.J.; Cheng, H.; Zhang, H.; Ma, M.Z.; Li, Y.C.; Li, G.; Liaw, P.K.; Liu, R.P. The high-entropy alloys with high hardness and soft magnetic property prepared by mechanical alloying and high-pressure sintering. Intermetallics 2016, 70, 82–87. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.C.; Cho, Y.H. Elucidating the microstructural and tribological characteristics of NiCrAlCoCu and NiCrAlCoMo multicomponent alloy clad layers synthesized in situ. Surf. Coat. Technol. 2009, 203, 1694–1701. [Google Scholar]
- Chuang, M.H.; Tsai, M.H.; Wang, W.R.; Lin, S.J.; Yeh, J.W. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 2011, 59, 6308–6317. [Google Scholar] [CrossRef]
- Chen, M.; Shi, X.H.; Yang, H.J.; Liaw, P.K.; Gao, M.C.; Hawk, J.A.; Qiao, J.W. Wear behavior of Al0.6CoCrFeNi high-entropy alloys: Effect of environments. J. Mater. Res. 2018, 33, 3310–3320. [Google Scholar] [CrossRef]
- Hemphill, M.A.; Yuan, T.; Wang, G.Y.; Yeh, J.W.; Tsai, C.W.; Chuang, A.; Liaw, P.K. Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater. 2012, 60, 5723–5734. [Google Scholar] [CrossRef]
- Tang, Z.; Yuan, T.; Tsai, C.W.; Yeh, J.W.; Lundin, C.D.; Liaw, P.K. Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy. Acta Mater. 2015, 99, 247–258. [Google Scholar] [CrossRef]
- Shukla, S.; Wang, T.H.; Cotton, S.; Mishra, R.S. Hierarchical microstructure for improved fatigue properties in a eutectic high entropy alloy. Scr. Mater. 2018, 156, 105–109. [Google Scholar] [CrossRef]
- Thurston, K.V.S.; Gludovatz, B.; Yu, Q.; Laplanche, G.; George, E.P.; Ritchie, R.O. Temperature and load-ratio dependent fatigue-crack growth in the CrMnFeCoNi high-entropy alloy. J. Alloys Compd. 2019, 794, 525–533. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.P.; Chang, C.C.; Chen, Y.Y.; Yeh, J.W.; Shih, H.C. Effect of the aluminium content of AlxCrFe1.5MnNi0.5 high-entropy alloys on the corrosion behaviour in aqueous environments. Corros. Sci. 2008, 50, 2053–2060. [Google Scholar] [CrossRef]
- Shi, Y.Z.; Collins, L.; Balke, N.; Liaw, P.K.; Yang, B. In-situ electrochemical-AFM study of localized corrosion of AlxCoCrFeNi high-entropy alloys in chloride solution. Appl. Surf. Sci. 2018, 439, 533–544. [Google Scholar] [CrossRef]
- Shi, Y.Z.; Collins, L.; Feng, R.; Zhang, C.; Balke, N.; Liaw, P.K.; Yang, B. Homogenization of AlxCoCrFeNi high-entropy alloys with improved corrosion resistance. Corros. Sci. 2018, 133, 120–131. [Google Scholar] [CrossRef]
- Shi, Y.Z.; Yang, B.; Xie, X.; Brechtl, J.; Dahmen, K.A.; Liaw, P.K. Corrosion of AlxCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior. Corros. Sci. 2017, 119, 33–45. [Google Scholar] [CrossRef]
- Li, Z.M.; Körmann, F.; Grabowski, B.; Neugebauer, J.; Raabe, D. Ab initio assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity. Acta Mater. 2017, 136, 262–270. [Google Scholar] [CrossRef]
- Shi, P.J.; Ren, W.L.; Zheng, T.X.; Ren, Z.M.; Hou, X.L.; Peng, J.C.; Hu, P.F.; Gao, Y.F.; Zhong, Y.B.; Liaw, P.K. Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae. Nat. Commun. 2019, 10, 489. [Google Scholar] [CrossRef]
- Li, W.D.; Liaw, P.K.; Gao, Y.F. Fracture resistance of high entropy alloys: A review. Intermetallics 2018, 99, 69–83. [Google Scholar] [CrossRef]
- Gludovatz, B.; Hohenwarter, A.; Catoor, D.; Chang, E.H.; George, E.P.; Ritchie, R.O. A fracture-resistant high-entropy alloy for cryogenic applications. Science 2014, 345, 1153–1158. [Google Scholar] [CrossRef] [Green Version]
- Savan, A.; Allermann1, T.; Wang, X.; Grochlal, D.; Banko, L.; Kalchev, Y.; Kostka, A. Structure zone investigation of multiple principle element alloy thin films as optimization for nanoindentation measurements. Materials 2020, 13, 2113. [Google Scholar] [CrossRef]
- Huo, W.Y.; Liu, X.D.; Tan, S.Y.; Fang, F.; Xie, Z.H.; Shang, J.K.; Jiang, J.Q. Ultrahigh hardness and high electrical resistivity in nano-twinned, nanocrystalline high-entropy alloy films. Appl. Surf. Sci. 2018, 439, 222–225. [Google Scholar] [CrossRef]
- Zhang, Y.; Zuo, T.T.; Cheng, Y.Q.; Liaw, P.K. High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci. Rep. 2013, 3, 1455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Liu, P.; Liaw, P.K. Microstructures and properties of high-entropy alloy films and coatings: A review. Mater. Res. Lett. 2018, 6, 199–229. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, H.; Rösch, N.; Lindner, T.; Lampke, T.; Ganss, F.; Hellwig, O.; Lampke, T.; Wagner, G.; Seyller, T. CoCrFeNi high-entropy alloy thin films synthesized by magnetron sputter deposition from spark plasma sintered targets. Coatings 2021, 11, 468. [Google Scholar] [CrossRef]
- Chen, T.K.; Shun, T.T.; Yeh, J.W.; Wong, M.S. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surf. Coat. Technol. 2004, 188–189, 193–200. [Google Scholar] [CrossRef]
- Huang, P.K.; Yeh, J.W. Effects of nitrogen content on structure and mechanical properties of multi-element (AlCrNbSiTiV)N coating. Surf. Coat. Technol. 2009, 203, 1891–1896. [Google Scholar] [CrossRef]
- Liang, S.C.; Tsai, D.C.; Chang, Z.C.; Sung, H.S.; Lin, Y.C.; Yeh, Y.J.; Deng, M.J.; Shieu, F.S. Structural and mechanical properties of multi-element (TiVCrZrHf)N coatings by reactive magnetron sputtering. Appl. Surf. Sci. 2011, 258, 399–403. [Google Scholar] [CrossRef]
- Koehler, J.S. Attempt to Design a Stronge Solid. Phys. Rev. B 1970, 2, 547–551. [Google Scholar] [CrossRef]
- Yang, W.M.C.; Tsakalakos, T.; Hilliard, J.E. Enhanced elastic modulus in composition-modulated gold-nickel and coppe-rpalladium foils. J. Appl. Phys. 1977, 48, 876–879. [Google Scholar] [CrossRef]
- Chu, X.; Wong, M.S.; Sproul, W.D.; Barnett, S.A. Mechanical properties and microstructures of polycrystalline ceramic/metal superlattices: TiN/Ni and TiN/Ni0.9Cr0.1. Surf. Technol. 1993, 61, 251–256. [Google Scholar] [CrossRef]
- Liu, M.; Yang, Y.; Mao, Q.; Wei, Y.q.; Li, Y.J.; Ma, N.N.; Liu, H.; Liu, X.J. Influence of radio frequency magnetron sputtering parameters on the structure and performance of SiC films. Ceram. Int. 2021, 47, 24098–24105. [Google Scholar] [CrossRef]
- Li, W.; Liu, P.; Zhao, Y.S.; Ma, F.C.; Liu, X.K.; Chen, X.H.; He, D.H. Structure, mechanical properties and thermal stability of CrAlN/ZrO2 nanomultilayers deposited by magnetron sputtering. J. Alloys Compd. 2013, 562, 5–10. [Google Scholar] [CrossRef]
- Chen, H.; Zhou, X.M.; Ding, C.X. Investigation of the thermomechanical properties of a plasma-sprayed nanostructured zirconia coating. J. Eur. Ceram. Soc. 2003, 23, 1449–1455. [Google Scholar] [CrossRef]
- Yue, J.L.; Liu, Y.; Li, G.Y. Template-induced coherent growth and mechanical properties of ZrO2/TiN nano-multilayers. Scr. Mater. 2009, 60, 240–243. [Google Scholar] [CrossRef]
- Kim, I.W.; Li, Q.; Marks, L.D.; Barnett, S.A. Critical thickness for transformation of epitaxially stabilized cubic AlN in superlattices. Appl. Phys. Lett. 2001, 78, 892–894. [Google Scholar] [CrossRef] [Green Version]
- Chu, X.; Bamett, S.A.; Wong, M.S.; Sproul, W.D. Reactive unbalanced magnetron sputter deposition of polycrystalline TiN/NbN superlattice coatings. Surf. Coat. Technol. 1993, 57, 13–18. [Google Scholar] [CrossRef]
- Kato, M.; Mori, T.; Schwartz, L.H. Hardening by spinodal modulated structure. Acta Met. 1980, 28, 285–290. [Google Scholar] [CrossRef]
- Pacheco, E.S.; Mura, T. Interaction between a screw dislocation and a bimetallic interface. J. Mech. Phys. Solids 1969, 17, 163–170. [Google Scholar] [CrossRef]
- Chu, X.; Barnett, S.A. Model of superlattice yield stress and hardness enhancements. J. Appl. Phys. 1995, 77, 4403–4411. [Google Scholar] [CrossRef]
- Li, W.; Liu, P.; Xue, Z.H.; Ma, F.C.; Zhang, K.; Chen, X.H.; Feng, R.; Liaw, P.K. Microstructures, mechanical behavior and strengthening mechanism of TiSiCN nanocomposite films. Sci. Rep. 2017, 7, 2140. [Google Scholar] [CrossRef] [Green Version]
- Shinn, M.; Barnett, S.A. Effect of superlattice layer elastic moduli on hardness. Appl. Phys. Lett. 1994, 64, 61–63. [Google Scholar] [CrossRef]
Sample | N2/Ar (sccm) | P (Pa) | DC/RF (W) | Modulation (nm) | Film (µm) | Al At% | N At% | Zr At% | Ti At% | Mo At% | Cr At% | O At% |
---|---|---|---|---|---|---|---|---|---|---|---|---|
AlCrTiZrMoN | 15/20 | 0.6 | 100 | 2 | 7.95 | 13.11 | 5.21 | 6.37 | 6.41 | 6.60 | 54.35 | |
(AlCrTiZrMo)N/ZrO2 | 15/20 | 0.6 | 100/150 | 0.2 | 2 | 6.02 | 8.75 | 5.17 | 4.62 | 5.57 | 5.30 | 64.58 |
(AlCrTiZrMo)N/ZrO2 | 15/20 | 0.6 | 100/150 | 0.4 | 2 | 6.54 | 11.73 | 5.73 | 5.67 | 5.83 | 5.65 | 58.87 |
(AlCrTiZrMo)N/ZrO2 | 15/20 | 0.6 | 100/150 | 0.6 | 2 | 6.75 | 12.29 | 5.99 | 5.88 | 5.88 | 5.73 | 57.48 |
(AlCrTiZrMo)N/ZrO2 | 15/20 | 0.6 | 100/150 | 0.8 | 2 | 6.85 | 11.21 | 6.22 | 5.78 | 5.93 | 5.90 | 58.12 |
(AlCrTiZrMo)N/ZrO2 | 15/20 | 0.6 | 100/150 | 1.2 | 2 | 6.84 | 12.63 | 6.78 | 5.69 | 6.01 | 5.83 | 56.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, Q.; Li, W.; Liu, P.; Cheng, W.; Zhang, K.; Ma, F.; Chen, X.; Feng, R.; Liaw, P.K. Mechanical Behavior and Thermal Stability of (AlCrTiZrMo)N/ZrO2 Nano-Multilayered High-Entropy Alloy Film Prepared by Magnetron Sputtering. Crystals 2022, 12, 232. https://doi.org/10.3390/cryst12020232
Zhai Q, Li W, Liu P, Cheng W, Zhang K, Ma F, Chen X, Feng R, Liaw PK. Mechanical Behavior and Thermal Stability of (AlCrTiZrMo)N/ZrO2 Nano-Multilayered High-Entropy Alloy Film Prepared by Magnetron Sputtering. Crystals. 2022; 12(2):232. https://doi.org/10.3390/cryst12020232
Chicago/Turabian StyleZhai, Qingqing, Wei Li, Ping Liu, Wenjie Cheng, Ke Zhang, Fengcang Ma, Xiaohong Chen, Rui Feng, and Peter K. Liaw. 2022. "Mechanical Behavior and Thermal Stability of (AlCrTiZrMo)N/ZrO2 Nano-Multilayered High-Entropy Alloy Film Prepared by Magnetron Sputtering" Crystals 12, no. 2: 232. https://doi.org/10.3390/cryst12020232
APA StyleZhai, Q., Li, W., Liu, P., Cheng, W., Zhang, K., Ma, F., Chen, X., Feng, R., & Liaw, P. K. (2022). Mechanical Behavior and Thermal Stability of (AlCrTiZrMo)N/ZrO2 Nano-Multilayered High-Entropy Alloy Film Prepared by Magnetron Sputtering. Crystals, 12(2), 232. https://doi.org/10.3390/cryst12020232