Recent Progress on High-Entropy Films Deposited by Magnetron Sputtering
Abstract
:1. Introduction
2. High-Entropy Films Deposited by Magnetron Sputtering
3. Process
3.1. Deposition of HEFs
3.2. DC Magnetron Sputtering
3.3. HiPIMS
3.4. Deposition Rate
4. Properties of HEFs Deposited by Magnetron Sputtering
4.1. Morphology and Structure
4.1.1. Morphology
4.1.2. Structure
4.2. Mechanical and Tribological Properties
4.2.1. Hardness
4.2.2. Tribological Properties
4.3. Corrosion Behaviour
4.3.1. Corrosion in Liquid
4.3.2. Effect of Composition
4.3.3. Effect of Substrate Bias and Temperature
4.3.4. Oxidation at High Temperature
4.4. Thermal Stability
5. Applications
5.1. Biomedical Application
5.2. Diffusion Barrier Application
5.3. Wear Resistance Application
5.4. Machining Application
6. Conclusions and Outlooks
- -
- The working principle of magnetron sputtering and the process of HEF preparation has been presented. Standard sputtering (direct current) and high-power impulse magnetron sputtering (HiPIMS) were discussed.
- -
- The effect of different magnetron sputtering parameters on the physico-chemical properties of HEFs was analyzed and discussed. The substrate bias voltage, the substrate temperatures and the flow of the gases (N2, O2 and CH4/C2H2) strongly influence various properties of HEFs. Single phases and intermetallic compounds are formed. The deposition rates decrease as the magnetron parameters are changed.
- -
- The mechanical properties of HEFs have been summarized, and they show that the films exhibit high hardness, Youngs modulus and wear resistance. Nitride films have been reported to be super hard due to the high density of their microstructure. The latter can be controlled by controlling the magnetron sputtering parameters.
- -
- The paper focuses mainly on the analysis of two properties of HEFs, namely, electrochemical and physical (thermal) properties. Corrosion has been reported to be influenced by several parameters: the content/type of the elements constituting the HEFs, the polarization voltage and the substrate temperature. It has been shown that the formation of dense films with low surface roughness prevents the penetration of the corrosive solution.
- -
- HEFs prepared by magnetron sputtering show better oxidation resistance at high temperature compared to conventional films. Oxides, such as Al2O3, that form on the surface of the films act as barriers to oxygen diffusion and protect the films.
- -
- HEFs also showed good thermal stability at high temperatures. The value of the threshold temperature depends on each composition, but in general, HEFs are thermally more stable compared to the conventional films. Ceramic HEFs, especially nitrides, are stable at temperatures reaching 1000 °C. However, at temperatures above 1000 °C, intermetallic compounds are formed. The large difference between the enthalpy and entropy is the main reason for the phase transformation.
- -
- Due to their high performances, HEFs prepared by magnetron sputtering demonstrated their potential as protective coatings that can be used for various applications, such as in biomedicine, barrier diffusion, wear resistance and machining tools.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef] [Green Version]
- Senkov, O.N.; Miller, J.D.; Miracle, D.B.; Woodward, C. Accelerated exploration of multi-principal element alloys with solid solution phases. Nat. Commun. 2015, 6, 6529. [Google Scholar] [CrossRef]
- Cantor, B.; Chang, I.; Knight, P.; Vincent, A. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375, 213–218. [Google Scholar] [CrossRef]
- Gao, M.C.; Yeh, J.-W.; Liaw, P.K.; Zhang, Y. High-Entropy Alloys; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Yeh, J.-W. Recent progress in high entropy alloys. Ann. Chim. Sci. Mater. 2006, 31, 633–648. [Google Scholar] [CrossRef]
- Chuang, M.-H.; Tsai, M.-H.; Wang, W.-R.; Lin, S.-J.; Yeh, J.-W. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 2011, 59, 6308–6317. [Google Scholar] [CrossRef]
- Wu, Y.D.; Cai, Y.H.; Wang, T.; Si, J.J.; Zhu, J.; Wang, Y.D.; Hui, X.D. A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties. Mater. Lett. 2014, 130, 277–280. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Duval, T.; Hung, U.D.; Yeh, J.W.; Shih, H.C. Microstructure and electrochemical properties of high entropy alloys—A comparison with type-304 stainless steel. Corros. Sci. 2005, 47, 2257–2279. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Hong, U.T.; Shih, H.C.; Yeh, J.W.; Duval, T. Electrochemical kinetics of the high entropy alloys in aqueous environments—A comparison with type 304 stainless steel. Corros. Sci. 2005, 47, 2679–2699. [Google Scholar] [CrossRef]
- Ma, S.G.; Zhang, S.F.; Gao, M.C.; Liaw, P.K.; Zhang, Y. A successful synthesis of the CoCrFeNiAl0.3 single-crystal, high-entropy alloy by Bridgman solidification. JOM 2013, 65, 1751–1758. [Google Scholar] [CrossRef]
- Glasscott, M.W.; Pendergast, A.D.; Goines, S.; Bishop, A.R.; Hoang, A.T.; Renault, C.; Dick, J.E. Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis. Nat. Commun. 2019, 10, 2650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuh, B.; Völker, B.; Todt, J.; Schell, N.; Perrière, L.; Li, J.; Couzinié, J.P.; Hohenwarter, A. Thermodynamic instability of a nanocrystalline, single-phase TiZrNbHfTa alloy and its impact on the mechanical properties. Acta Mater. 2018, 142, 201–212. [Google Scholar] [CrossRef]
- Xia, S.; Gao, M.C.; Yang, T.; Liaw, P.K.; Zhang, Y. Phase stability and microstructures of high entropy alloys ion irradiated to high doses. J. Nucl. Mater 2016, 480, 100–108. [Google Scholar] [CrossRef] [Green Version]
- Guo, F.; Li, K.; Huang, X.; Xie, Z.; Gong, F. Understanding the wear failure mechanism of TiAlSiCN nanocomposite coating at evaluated temperatures. Tribol. Int. 2021, 154, 106716. [Google Scholar] [CrossRef]
- Bagdasaryan, A.A.; Pshyk, A.V.; Coy, L.E.; Kempiński, M.; Pogrebnjak, A.D.; Beresnev, V.M.; Jurga, S. Structural and mechanical characterization of (TiZrNbHfTa)N/WN multilayered nitride coatings. Mater. Lett. 2018, 229, 364–367. [Google Scholar] [CrossRef]
- Shen, W.; Tsai, M.; Tsai, K.; Juan, C.; Tsai, C.; Yeh, J.; Chang, Y. Superior oxidation resistance of (Al0.34Cr0.22Nb0.11Si0.11Ti0.22) 50N50 high-entropy nitride. J. Electrochem. Soc. 2013, 160, C531. [Google Scholar] [CrossRef]
- Kretschmer, A.; Kirnbauer, A.; Moraes, V.; Primetzhofer, D.; Yalamanchili, K.; Rudigier, H.; Mayrhofer, P.H. Improving phase stability, hardness, and oxidation resistance of reactively magnetron sputtered (Al, Cr, Nb, Ta, Ti) N thin films by Si-alloying. Surf. Coat. Technol. 2021, 416, 127162. [Google Scholar] [CrossRef]
- Lin, M.-I.; Tsai, M.-H.; Shen, W.-J.; Yeh, J.-W. Evolution of structure and properties of multi-component (AlCrTaTiZr)Ox films. Thin Solid Films 2010, 518, 2732–2737. [Google Scholar] [CrossRef]
- Kirnbauer, A.; Spadt, C.; Koller, C.M.; Kolozsvári, S.; Mayrhofer, P.H. High-entropy oxide thin films based on Al–Cr–Nb–Ta–Ti. Vacuum 2019, 168, 108850. [Google Scholar] [CrossRef]
- Cheng, K.-H.; Lai, C.-H.; Lin, S.-J.; Yeh, J.-W. Structural and mechanical properties of multi-element (AlCrMoTaTiZr) Nx coatings by reactive magnetron sputtering. Thin Solid Films 2011, 519, 3185–3190. [Google Scholar] [CrossRef]
- Jhong, Y.-S.; Huang, C.-W.; Lin, S.-J. Effects of CH4 flow ratio on the structure and properties of reactively sputtered (CrNbSiTiZr) Cx coatings. Mater. Chem. Phys. 2018, 210, 348–352. [Google Scholar] [CrossRef]
- Liang, S.-C.; Chang, Z.-C.; Tsai, D.-C.; Lin, Y.-C.; Sung, H.-S.; Deng, M.-J.; Shieu, F.-S. Effects of substrate temperature on the structure and mechanical properties of (TiVCrZrHf) N coatings. Appl. Surf. Sci. 2011, 257, 7709–7713. [Google Scholar] [CrossRef]
- Malinovskis, P.; Fritze, S.; Riekehr, L.; von Fieandt, L.; Cedervall, J.; Rehnlund, D.; Nyholm, L.; Lewin, E.; Jansson, U. Synthesis and characterization of multicomponent (CrNbTaTiW) C films for increased hardness and corrosion resistance. Mater. Des. 2018, 149, 51–62. [Google Scholar] [CrossRef]
- Chen, R.; Cai, Z.; Pu, J.; Lu, Z.; Chen, S.; Zheng, S.; Zeng, C. Effects of nitriding on the microstructure and properties of VAlTiCrMo high-entropy alloy coatings by sputtering technique. J. Alloys Compd. 2020, 827, 153836. [Google Scholar] [CrossRef]
- Von Fieandt, K.; Riekehr, L.; Osinger, B.; Fritze, S.; Lewin, E. Influence of N content on structure and mechanical properties of multi-component Al-Cr-Nb-Y-Zr based thin films by reactive magnetron sputtering. Surf. Coat. Technol. 2020, 389, 125614. [Google Scholar] [CrossRef]
- Khan, N.A.; Akhavan, B.; Zheng, Z.; Liu, H.; Zhou, C.; Zhou, H.; Chang, L.; Wang, Y.; Liu, Y.; Sun, L. Nanostructured AlCoCrCu0.5FeNi high entropy oxide (HEO) thin films fabricated using reactive magnetron sputtering. Appl. Surf. Sci. 2021, 553, 149491. [Google Scholar] [CrossRef]
- Kim, Y.S.; Park, H.J.; Lim, K.S.; Hong, S.H.; Kim, K.B. Structural and mechanical properties of AlCoCrNi high entropy nitride films: Influence of process pressure. Coating 2020, 10, 10. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-C.; Hsu, S.-Y.; Song, R.-W.; Lo, W.-L.; Lai, Y.-T.; Tsai, S.-Y.; Duh, J.-G. Improving the hardness of high entropy nitride (Cr0.35Al0.25Nb0.12Si0.08V0.20) N coatings via tuning substrate temperature and bias for anti-wear applications. Surf. Coat. Technol. 2020, 403, 126417. [Google Scholar] [CrossRef]
- Shen, W.-J.; Tsai, M.-H.; Chang, Y.-S.; Yeh, J.-W. Effects of substrate bias on the structure and mechanical properties of (Al1.5CrNb0.5Si0.5Ti) Nx coatings. Thin Solid Films 2012, 520, 6183–6188. [Google Scholar] [CrossRef]
- Wang, J.-J.; Chang, S.-Y.; Ouyang, F.-Y. Effect of substrate bias on the microstructure and properties of (AlCrSiNbZr) Nx high entropy nitride thin film. Surf. Coat. Technol. 2020, 393, 125796. [Google Scholar] [CrossRef]
- Tian, L.; Feng, Z.; Xiong, W. Microstructure, microhardness, and wear resistance of AlCoCrFeNiTi/Ni60 coating by plasma spraying. Coatings 2018, 8, 112. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Liu, P.; Liaw, P.K. Microstructures and properties of high-entropy alloy films and coatings: A review. Mater. Res. Lett. 2018, 6, 199–229. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A. High entropy alloy coatings and technology. Coatings 2021, 11, 372. [Google Scholar] [CrossRef]
- Duchaniya, R.K.; Pandel, U.; Rao, P. Coatings based on high entropy alloys: An overview. Mater. Today Proc. 2021, 44, 4467–4473. [Google Scholar] [CrossRef]
- Zelenitsas, K.; Tsakiropoulos, P. Effect of Al, Cr and Ta additions on the oxidation behaviour of Nb–Ti–Si in situ composites at 800 C. J. Mater. Sci. Eng. A 2006, 416, 269–280. [Google Scholar] [CrossRef]
- Kim, B.G.; Kim, G.M.; Kim, C.J. Oxidation behavior of TiAl-X (X = Cr, V, Si, Mo or Nb) intermetallics at elevated temperature. J. Scr. Metall. Mater. 1995, 33, 1117–1125. [Google Scholar] [CrossRef]
- Miracle, D.B.; Miller, J.D.; Senkov, O.N.; Woodward, C.; Uchic, M.D.; Tiley, J. Exploration and development of high entropy alloys for structural applications. Entropy 2014, 16, 494–525. [Google Scholar] [CrossRef]
- Otto, F.; Yang, Y.; Bei, H.; George, E.P. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 2013, 61, 2628–2638. [Google Scholar] [CrossRef] [Green Version]
- Laurent-Brocq, M.; Perrière, L.; Pirès, R.; Champion, Y. From high entropy alloys to diluted multi-component alloys: Range of existence of a solid-solution. Mater. Des. 2016, 103, 84–89. [Google Scholar] [CrossRef]
- Lai, C.-H.; Lin, S.-J.; Yeh, J.-W.; Chang, S.-Y. Preparation and characterization of AlCrTaTiZr multi-element nitride coatings. Surf. Coat. Technol. 2006, 201, 3275–3280. [Google Scholar] [CrossRef]
- Cheng, K.-H.; Weng, C.-H.; Lai, C.-H.; Lin, S.-J. Study on adhesion and wear resistance of multi-element (AlCrTaTiZr)N coatings. Thin Solid Films 2009, 517, 4989–4993. [Google Scholar] [CrossRef]
- Braeckman, B.R.; Misják, F.; Radnóczi, G.; Depla, D. The influence of Ge and In addition on the phase formation of CoCrCuFeNi high-entropy alloy thin films. Thin Solid Films 2016, 616, 703–710. [Google Scholar] [CrossRef]
- Azibi, M.; Saoula, N.; Madaoui, N.; Aknouche, H. Effects of Nitrogen Content on the Structural, Mechanical, and Corrosion Properties of ZrN Thin Films Grown on AISI 316L by Radiofrequency Magnetron Sputtering. Cryst. Res. Technol. 2021, 56, 2100096. [Google Scholar] [CrossRef]
- Shukla, K.; Rane, R.; Alphonsa, J.; Maity, P.; Mukherjee, S. Structural, mechanical and corrosion resistance properties of Ti/TiN bilayers deposited by magnetron sputtering on AISI 316L. Surf. Coat. Technol. 2017, 324, 167–174. [Google Scholar] [CrossRef]
- Ariza, E.; Rocha, L.A.; Vaz, F.; Cunha, L.; Ferreira, S.C.; Carvalho, P.; Rebouta, L.; Alves, E.; Goudeau, P.; Rivière, J.P. Corrosion resistance of ZrNxOy thin films obtained by rf reactive magnetron sputtering. Thin Solid Films 2004, 469-470, 274–281. [Google Scholar] [CrossRef] [Green Version]
- Kozlovskiy, A.; Shlimas, I.; Dukenbayev, K.; Zdorovets, M. Structure and corrosion properties of thin TiO2 films obtained by magnetron sputtering. Vacuum 2019, 164, 224–232. [Google Scholar] [CrossRef]
- Dou, D.; Li, X.; Zheng, Z.; Li, J. Coatings of FeAlCoCuNiV high entropy alloy. Surf. Eng. 2016, 32, 766–770. [Google Scholar] [CrossRef]
- Hsueh, H.-T.; Shen, W.-J.; Tsai, M.-H.; Yeh, J.-W. Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr)100−xNx. Surf. Coat. Technol. 2012, 206, 4106–4112. [Google Scholar] [CrossRef]
- Schneider, J.M. How high is the entropy in high entropy ceramics? J. Appl. Phys. 2021, 130, 150903. [Google Scholar] [CrossRef]
- Kirnbauer, A.; Kretschmer, A.; Koller, C.; Wojcik, T.; Paneta, V.; Hans, M.; Schneider, J.; Polcik, P.; Mayrhofer, P. Mechanical properties and thermal stability of reactively sputtered multi-principal-metal Hf-Ta-Ti-V-Zr nitrides. Surf. Coat. Technol. 2020, 389, 125674. [Google Scholar] [CrossRef]
- Billard, A.; Perry, F. Pulvérisation cathodique magnétron, Techniques de l’ingénieur. Matériaux Métalliques 1762, 8733, 2005. [Google Scholar]
- Mattox, D.M. Physical vapor deposition (PVD) processes. Met. Finish. 2002, 100, 394–408. [Google Scholar] [CrossRef]
- Manasterski, C. La Pulvérisation Cathodique Industrielle; PPUR Presses Polytechniques: Lausanne, Switzerland, 2005. [Google Scholar]
- Bishop, C. Vacuum Deposition onto Webs, Films and Foils; William Andrew: Norwich, NY, USA, 2011. [Google Scholar]
- Michiels, M.; Konstantinidis, S.; Snyders, R. La Pulvérisation Cathodique Magnétron en Régime D’impulsions de Haute Puissance (Hipims). 2013. Available online: https://www.techniques-ingenieur.fr/base-documentaire/innovation-th10/nanomateriaux-synthese-et-elaboration-42195210/la-pulverisation-cathodique-magnetron-en-regime-d-impulsions-de-haute-puissance-hipims-in207/ (accessed on 17 January 2022).
- Xu, Y.; Li, G.; Li, G.; Gao, F.; Xia, Y. Effect of bias voltage on the growth of super-hard (AlCrTiVZr)N high-entropy alloy nitride films synthesized by high power impulse magnetron sputtering. Appl. Surf. Sci. 2021, 564, 150417. [Google Scholar] [CrossRef]
- Xu, Y.; Li, G.; Xia, Y. Synthesis and characterization of super-hard AlCrTiVZr high-entropy alloy nitride films deposited by HiPIMS. Appl. Surf. Sci. 2020, 523, 146529. [Google Scholar] [CrossRef]
- Bachani, S.K.; Wang, C.-J.; Lou, B.-S.; Chang, L.-C.; Lee, J.-W. Fabrication of TiZrNbTaFeN high-entropy alloys coatings by HiPIMS: Effect of nitrogen flow rate on the microstructural development, mechanical and tribological performance, electrical properties and corrosion characteristics. J. Alloys Compd. 2021, 873, 159605. [Google Scholar] [CrossRef]
- Cui, P.; Li, W.; Liu, P.; Zhang, K.; Ma, F.; Chen, X.; Feng, R.; Liaw, P.K. Effects of nitrogen content on microstructures and mechanical properties of (AlCrTiZrHf) N high-entropy alloy nitride films. J. Alloys Compd. 2020, 834, 155063. [Google Scholar] [CrossRef]
- Ren, B.; Yan, S.; Zhao, R.; Liu, Z. Structure and properties of (AlCrMoNiTi) Nx and (AlCrMoZrTi) Nx films by reactive RF sputtering. Surf. Coat. Technol. 2013, 235, 764–772. [Google Scholar] [CrossRef]
- Chang, C.; Li, P.; Wu, Q.; Wang, M.; Sung, C.; Hsu, C.-Y.J.M.T. Nanostructured and mechanical properties of high-entropy alloy nitride films prepared by magnetron sputtering at different substrate temperatures. Mater. Technol. 2019, 34, 343–349. [Google Scholar] [CrossRef]
- Zhao, F.; Song, Z.; Zhang, G.; Hou, X.; Deng, D. Effects of substrate bias on structure and mechanical properties of AlCrTiWNbTa coatings. Surf. Eng. 2013, 29, 778–782. [Google Scholar] [CrossRef]
- Yu, X.; Wang, J.; Wang, L.; Huang, W. Fabrication and characterization of CrNbSiTiZr high-entropy alloy films by radio-frequency magnetron sputtering via tuning substrate bias. Surf. Coat. Technol. 2021, 412, 127074. [Google Scholar] [CrossRef]
- Wang, J.; Kuang, S.; Yu, X.; Wang, L.; Huang, W. Tribo-mechanical properties of CrNbTiMoZr high-entropy alloy film synthesized by direct current magnetron sputtering. Surf. Coat. Technol. 2020, 403, 126374. [Google Scholar] [CrossRef]
- Dai, C.-d.; Fu, Y.; Guo, J.-x.; Du, C.-w. Effects of substrate temperature and deposition time on the morphology and corrosion resistance of FeCoCrNiMo 0.3 high-entropy alloy coating fabricated by magnetron sputtering. Int. J. Min. Met. Mater. 2020, 27, 1388–1397. [Google Scholar] [CrossRef]
- Sun, X.; Cheng, X.; Cai, H.; Ma, S.; Xu, Z.; Ali, T. Microstructure, mechanical and physical properties of FeCoNiAlMnW high-entropy films deposited by magnetron sputtering. Appl. Surf. Sci. 2020, 507, 145131. [Google Scholar] [CrossRef]
- Behravan, N.; Farhadizadeh, A.; Ghasemi, S.; Khademi, A.; Shojaei, H.; Ghomi, H. The pressure dependence of structure and composition of sputtered AlCrSiTiMoO high entropy thin film. J. Alloys Compd. 2021, 852, 156421. [Google Scholar] [CrossRef]
- Liu, L.; Zhu, J.B.; Hou, C.; Li, J.C.; Jiang, Q. Dense and smooth amorphous films of multicomponent FeCoNiCuVZrAl high-entropy alloy deposited by direct current magnetron sputtering. Mater. Des. 2013, 46, 675–679. [Google Scholar] [CrossRef]
- Zhao, S.; Wu, H.; Yin, R.; Wang, X.; Zhong, H.; Fu, Q.; Wan, W.; Cheng, T.; Shi, Y.; Cai, G. Preparation and electrocatalytic properties of (FeCrCoNiAl0.1) Ox high-entropy oxide and NiCo-(FeCrCoNiAl0.1) Ox heterojunction films. J. Alloys Compd. 2021, 868, 159108. [Google Scholar] [CrossRef]
- Bi, L.; Li, X.; Li, Z.; Hu, Y.; Zhang, J.; Wang, Q.; Dong, C.; Zheng, Y.; Liaw, P.K. Performance and local structure evolution of NbMoTaWV entropy-stabilized oxide thin films with variable oxygen content. Surf. Coat. Technol. 2020, 402, 126326. [Google Scholar] [CrossRef]
- Li, H.; Jiang, N.; Li, J.; Huang, J.; Kong, J.; Xiong, D. Hard and tough (NbTaMoW) Nx high entropy nitride films with sub-stoichiometric nitrogen. J. Alloys Compd. 2021, 889, 161713. [Google Scholar] [CrossRef]
- Xia, A.; Dedoncker, R.; Glushko, O.; Cordill, M.J.; Depla, D.; Franz, R. Influence of the nitrogen content on the structure and properties of MoNbTaVW high entropy alloy thin films. J. Alloys Compd. 2021, 850, 156740. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, X.; Wang, C.; Sui, X.; Wang, Y.; Zhou, H.; Hao, J. Tailoring the microstructure, mechanical and tribocorrosion performance of (CrNbTiAlV) Nx high-entropy nitride films by controlling nitrogen flow. J. Mater. Sci. Technol. 2022, 107, 172–182. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Hsu, S.-Y.; Lai, Y.-T.; Kuo, P.-H.; Tsai, S.-Y.; Duh, J.-G. Effect of the N2/(Ar+ N2) ratio on mechanical properties of high entropy nitride (Cr0.35Al0.25Nb0.12Si0.08V0.20) Nx films. Mater. Chem. Phys. 2021, 274, 125195. [Google Scholar] [CrossRef]
- El Garah, M.; Touaibia, D.E.; Achache, S.; Michau, A.; Sviridova, E.; Postnikov, P.S.; Chehimi, M.M.; Schuster, F.; Sanchette, F. Effect of nitrogen content on structural and mechanical properties of AlTiZrTaHf(-N) high entropy films deposited by reactive magnetron sputtering. Surf. Coat. Technol. 2022, 432, 128051. [Google Scholar] [CrossRef]
- Chen, L.; Li, W.; Liu, P.; Zhang, K.; Ma, F.; Chen, X.; Zhou, H.; Liu, X. Microstructure and mechanical properties of (AlCrTiZrV) Nx high-entropy alloy nitride films by reactive magnetron sputtering. Vacuum 2020, 181, 109706. [Google Scholar] [CrossRef]
- Von Fieandt, K.; Paschalidou, E.-M.; Srinath, A.; Soucek, P.; Riekehr, L.; Nyholm, L.; Lewin, E. Multi-component (Al, Cr, Nb, Y, Zr) N thin films by reactive magnetron sputter deposition for increased hardness and corrosion resistance. Thin Solid Films 2020, 693, 137685. [Google Scholar] [CrossRef]
- Khan, N.A.; Akhavan, B.; Zhou, C.; Zhou, H.; Chang, L.; Wang, Y.; Liu, Y.; Bilek, M.M.; Liu, Z. High entropy nitride (HEN) thin films of AlCoCrCu0. 5FeNi deposited by reactive magnetron sputtering. Surf. Coat. Technol. 2020, 402, 126327. [Google Scholar] [CrossRef]
- Xing, Q.; Wang, H.; Chen, M.; Chen, Z.; Li, R.; Jin, P.; Zhang, Y. Mechanical properties and corrosion resistance of NbTiAlSiZrNx high-entropy films prepared by RF magnetron sputtering. Entropy 2019, 21, 396. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yan, X.-H.; Liao, W.-B.; Zhao, K. Effects of nitrogen content on the structure and mechanical properties of (Al0. 5CrFeNiTi0. 25) Nx high-entropy films by reactive sputtering. Entropy 2018, 20, 624. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Tang, G.; Ma, X.; Sun, M.; Wang, L. Characteristics of multi-element (ZrTaNbTiW) N films prepared by magnetron sputtering and plasma based ion implantation. Nucl. Instrum. Methods Phys. Res. B 2013, 301, 29–35. [Google Scholar] [CrossRef]
- Ren, B.; Lv, S.; Zhao, R.; Liu, Z.; Guan, S. Effect of sputtering parameters on (AlCrMnMoNiZr) N films. Surf. Eng. 2014, 30, 152–158. [Google Scholar] [CrossRef]
- Braic, V.; Vladescu, A.; Balaceanu, M.; Luculescu, C.; Braic, M. Nanostructured multi-element (TiZrNbHfTa) N and (TiZrNbHfTa) C hard coatings. Surf. Coat. Technol. 2012, 211, 117–121. [Google Scholar] [CrossRef]
- Tsai, C.-W.; Lai, S.-W.; Cheng, K.-H.; Tsai, M.-H.; Davison, A.; Tsau, C.-H.; Yeh, J.-W.J.T.S.F. Strong amorphization of high-entropy AlBCrSiTi nitride film. Thin Solid Films 2012, 520, 2613–2618. [Google Scholar] [CrossRef]
- Khan, N.A.; Akhavan, B.; Zhou, H.; Chang, L.; Wang, Y.; Sun, L.; Bilek, M.M.; Liu, Z. High entropy alloy thin films of AlCoCrCu0.5FeNi with controlled microstructure. Appl. Surf. Sci. 2019, 495, 143560. [Google Scholar] [CrossRef]
- Shaginyan, L.; Krapivka, N.; Firstov, S.; Kopylov, I. Properties of coatings of the Al–Cr–Fe–Co–Ni–Cu–V high entropy alloy produced by the magnetron sputtering. J. Superhard Mater. 2016, 38, 25–33. [Google Scholar] [CrossRef]
- Kao, W.; Su, Y.; Horng, J.; Wu, H. Effects of carbon doping on mechanical, tribological, structural, anti-corrosion and anti-glass-sticking properties of CrNbSiTaZr high entropy alloy coatings. Thin Solid Films 2021, 717, 138448. [Google Scholar] [CrossRef]
- Hsieh, M.-H.; Tsai, M.-H.; Shen, W.-J.; Yeh, J.-W. Structure and properties of two Al–Cr–Nb–Si–Ti high-entropy nitride coatings. Surf. Coat. Technol. 2013, 221, 118–123. [Google Scholar] [CrossRef]
- Kuang, S.; Wang, J.; Wang, L.; Huang, W.; Zhou, Z. Improvement of the mechanical and the tribological properties of CrNbTiMoZr coatings through the incorporation of carbon and the adjustment of the substrate bias voltage. Surf. Coat. Technol. 2021, 412, 127064. [Google Scholar] [CrossRef]
- Cui, Y.; Shen, J.; Manladan, S.M.; Geng, K.; Hu, S. Wear resistance of FeCoCrNiMnAlx high-entropy alloy coatings at high temperature. Appl. Surf. Sci. 2020, 512, 145736. [Google Scholar] [CrossRef]
- Lo, W.-L.; Hsu, S.-Y.; Lin, Y.-C.; Tsai, S.-Y.; Lai, Y.-T.; Duh, J.-G. Improvement of high entropy alloy nitride coatings (AlCrNbSiTiMo) N on mechanical and high temperature tribological properties by tuning substrate bias. Surf. Coat. Technol. 2020, 401, 126247. [Google Scholar] [CrossRef]
- Bachani, S.K.; Wang, C.-J.; Lou, B.-S.; Chang, L.-C.; Lee, J.-W. Microstructural characterization, mechanical property and corrosion behavior of VNbMoTaWAl refractory high entropy alloy coatings: Effect of Al content. Surf. Coat. Technol. 2020, 403, 126351. [Google Scholar] [CrossRef]
- Hung, S.-B.; Wang, C.-J.; Chen, Y.-Y.; Lee, J.-W.; Li, C.-L. Thermal and corrosion properties of V-Nb-Mo-Ta-W and V-Nb-Mo-Ta-W-Cr-B high entropy alloy coatings. Surf. Coat. Technol. 2019, 375, 802–809. [Google Scholar] [CrossRef]
- Wang, H.-d.; Liu, J.-n.; Xing, Z.-g.; Ma, G.-Z.; Cui, X.-f.; Jin, G.; Xu, B.-s. Microstructure and corrosion behaviour of AlCoFeNiTiZr high-entropy alloy films. Surf. Eng. 2020, 36, 78–85. [Google Scholar] [CrossRef]
- Feng, X.; Tang, G.; Gu, L.; Ma, X.; Sun, M.; Wang, L. Preparation and characterization of TaNbTiW multi-element alloy films. Appl. Surf. Sci. 2012, 261, 447–453. [Google Scholar] [CrossRef]
- Tsai, D.-C.; Deng, M.-J.; Chang, Z.-C.; Kuo, B.-H.; Chen, E.-C.; Chang, S.-Y.; Shieu, F.-S. Oxidation resistance and characterization of (AlCrMoTaTi)-Six-N coating deposited via magnetron sputtering. J. Alloys Compd. 2015, 647, 179–188. [Google Scholar] [CrossRef]
- Hruška, P.; Lukáč, F.; Cichoň, S.; Vondráček, M.; Čížek, J.; Fekete, L.; Lančok, J.; Veselý, J.; Minárik, P.; Cieslar, M. Oxidation of amorphous HfNbTaTiZr high entropy alloy thin films prepared by DC magnetron sputtering. J. Alloys Compd. 2021, 869, 157978. [Google Scholar] [CrossRef]
- Kirnbauer, A.; Wagner, A.; Moraes, V.; Primetzhofer, D.; Hans, M.; Schneider, J.; Polcik, P.; Mayrhofer, P. Thermal stability and mechanical properties of sputtered (Hf, Ta, V, W, Zr)-diborides. Acta Mater. 2020, 200, 559–569. [Google Scholar] [CrossRef]
- Cemin, F.; Jimenez, M.J.; Leidens, L.M.; Figueroa, C.A.; Alvarez, F. A thermodynamic study on phase formation and thermal stability of AlSiTaTiZr high-entropy alloy thin films. J. Alloys Compd. 2020, 838, 155580. [Google Scholar] [CrossRef]
- Braic, V.; Balaceanu, M.; Braic, M.; Vladescu, A.; Panseri, S.; Russo, A. Characterization of multi-principal-element (TiZrNbHfTa) N and (TiZrNbHfTa) C coatings for biomedical applications. J. Mech. Behav. Biomed. Mater. 2012, 10, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Vladescu, A.; Titorencu, I.; Dekhtyar, Y.; Jinga, V.; Pruna, V.; Balaceanu, M.; Dinu, M.; Pana, I.; Vendina, V.; Braic, M. In vitro biocompatibility of Si alloyed multi-principal element carbide coatings. PLoS ONE 2016, 11, e0161151. [Google Scholar] [CrossRef] [PubMed]
- Codescu, M.M.; Vladescu, A.; Geanta, V.; Voiculescu, I.; Pana, I.; Dinu, M.; Kiss, A.E.; Braic, V.; Patroi, D.; Marinescu, V.E.; et al. Zn based hydroxyapatite based coatings deposited on a novel FeMoTaTiZr high entropy alloy used for bone implants. Surf. Interfaces 2021, 28, 101591. [Google Scholar] [CrossRef]
- Peng, X.; Chen, L. Effect of high entropy alloys TiVCrZrHf barrier layer on microstructure and texture of Cu thin films. Mater. Lett. 2018, 230, 5–8. [Google Scholar] [CrossRef]
- Li, R.; Qiao, B.; Shang, H.; Zhang, J.; Jiang, C.; Zhang, W. Multi-component AlCrTaTiZrMo-nitride film with high diffusion resistance in copper metallization. J. Alloys Compd. 2018, 748, 258–264. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, C.; Wang, C.; Cao, X.; Ma, R.; Sui, X.; Hao, J.; Liu, W. Investigation of (CrAlTiNbV) Nx high-entropy nitride coatings via tailoring nitrogen flow rate for anti-wear applications in aviation lubricant. Appl. Surf. Sci. 2021, 557, 149813. [Google Scholar] [CrossRef]
- Shen, W.-J.; Tsai, M.-H.; Yeh, J.-W. Machining performance of sputter-deposited (Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 high-entropy nitride coatings. Coatings 2015, 5, 312–325. [Google Scholar] [CrossRef] [Green Version]
Composition | Gas | Structure | [Refs.] | |
---|---|---|---|---|
Without Gas | With Gas | |||
CrNbSiTiZr | CH4 | unmentioned | fcc | [21] |
FeCrCoNiAl0.1 | O2 | fcc | fcc (spinel) | [69] |
AlCoCrCu0.5FeNi | O2 | unmentioned | fcc (spinel) | [26] |
NbMoTaWV | O2 | bcc | amorphous | [70] |
Al0.19Cr0.13Nb0.19Ta0.30Ti0.19 | O2 | unmentioned | rutile-type (r-TiO2) | [19] |
AlCrTiVZr | N2 | amorphous | fcc | [57] |
NbTaMoW | N2 | bcc | fcc | [71] |
MoNbTaVW | N2 | bcc | fcc | [72] |
CrNbTiAlV | N2 | amorphous | fcc | [73] |
Cr0.35Al0.25Nb0.12Si0.08V0.20 | N2 | amorphous | B1-NaCl | [74] |
MoNbTaVW | N2 | bcc | fcc | [13] |
AlTiTaZrHf | N2 | amorphous | fcc | [75] |
VAlTiCrMo | N2 | bcc | fcc | [24] |
AlCrTiZrV | N2 | amorphous | fcc | [76] |
AlCrNbYZr | N2 | nanocomposite | fcc | [77] |
AlCoCrCu0.5FeN | N2 | unmentioned | fcc + fcc | [78] |
AlCrTiZrHf | N2 | amorphous | fcc | [59] |
NbTiAlSiZr | N2 | amorphous | amorphous | [79] |
AlCoCrNi | N2 | amorphous | amorphous | [27] |
Al0.5CrFeNiTi0.25 | N2 | amorphous | fcc | [80] |
FeCoNiCuVZrAl | N2 | amorphous | amorphous | [68] |
ZrTaNbTiW | N2 | amorphous | bcc + fcc | [81] |
AlCrMoNiTi | N2 | amorphous | bcc | [82] |
AlCrMoZrTi | N2 | amorphous | bcc | [82] |
TiZrNbHfTa | N2 | fcc + intermetallic | fcc | [83] |
AlCrMoTaTiZr | N2 | amorphous | fcc | [20] |
Composition | Hardness (GPa) | Young Modulus (GPa) | Friction Coefficient (Counterpart) | [Refs.] |
---|---|---|---|---|
FeCoNiAlMnW | 8.08 | 187–200 | - | [66] |
(AlCrNbSiTiV)N | 2493 HV | - | 0.78 (Al2O3 ball) | [61] |
(AlCrMnMoNiZr)N | 15.2 | 221 | 0.12 (Si3N4 ball) | [82] |
(TiVCrZrHf)N | 48 | 316 | - | [22] |
CrNbSiTiZr | 12.5 | 187.7 | 0.53 (GCr15 ball) | [63] |
CrNbTiMoZr | 9.7 | 150.1 | ~0.5 (GCr15 ball) | [64] |
(AlCrSiNbZr)N | 9.8 | - | - | [30] |
AlCrFeCoNiCuV | 9 | 225 | - | [86] |
AlCrTiWNbTa | 12.5 | 181 | - | [64] |
(Al1.5CrNb0.5Si0.5Ti)N | 36 | 350 | - | [29] |
AlCrSiTiMoO | 8.9 | 196 | - | [67] |
(CrNbSiTaZr)C | 20.12 | - | 0.05 (Si3N4 ball) | [87] |
(CrNbSiTaZr)C | 32.8 | 358 | 0.07 (100Cr6 ball) | [21] |
(TiZrNbHfTa)C | 27.5 | - | 0.15 (sapphire ball) | [83] |
(AlCoCrCu0.5FeNi)O | 8.2 | 140 | - | [26] |
(NbMoTaWV)O | 15.4 | 212.12 | - | [70] |
(AlCrNbTaTi)N | 24 | 400 | - | [19] |
(MoNbTaVW)N | 30 | - | - | [72] |
(VAlTiCrMo)N | 5.55 | 152.01 | - | [24] |
(AlCrTiZrV)N | 34 | 328 | - | [76] |
(AlCrNbYZr)N | 29.6 | 343 | - | [25] |
(AlCrTiZrHf)N | 33.1 | 347.3 | 0.5 (GCr15 ball) | [59] |
(NbTiAlSiZr)N | 29.6 | 184.5 | - | [79] |
(Al0.5CrFeNiTi0.25)N | 21.78 | 253.8 | - | [80] |
(FeCoNiCuVZrAl)N | ~11.5 | ~165 | - | [68] |
(ZrTaNbTiW)N | ~17 | ~144 | - | [81] |
(AlCrMoNiTi)N | 19.6 | 236 | ~0.22 (Si3N4 ball) | [60] |
(AlCrMoZrTi)N | 15 | 263 | ~0.14 (Si3N4 ball) | [60] |
(TiZrNbHfTa)N | 32.29 | - | 0.87 (sapphire ball) | [83] |
(AlCrMoTaTiZr)N | 40.2 | 400 | 0.74 (100Cr6 ball) | [20] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Garah, M.; Briois, P.; Sanchette, F. Recent Progress on High-Entropy Films Deposited by Magnetron Sputtering. Crystals 2022, 12, 335. https://doi.org/10.3390/cryst12030335
El Garah M, Briois P, Sanchette F. Recent Progress on High-Entropy Films Deposited by Magnetron Sputtering. Crystals. 2022; 12(3):335. https://doi.org/10.3390/cryst12030335
Chicago/Turabian StyleEl Garah, Mohamed, Pascal Briois, and Frederic Sanchette. 2022. "Recent Progress on High-Entropy Films Deposited by Magnetron Sputtering" Crystals 12, no. 3: 335. https://doi.org/10.3390/cryst12030335
APA StyleEl Garah, M., Briois, P., & Sanchette, F. (2022). Recent Progress on High-Entropy Films Deposited by Magnetron Sputtering. Crystals, 12(3), 335. https://doi.org/10.3390/cryst12030335