Super Bonding Strength of Al2O3 Nanoparticles Reinforced Sn Interlayer Steel/Aluminum Bimetal Casting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Martials
2.2. Casting Process
2.3. Microstructural Evaluations
2.4. Mechanical Characterizations
3. Results
3.1. Microstructure and Mechanical Properties of Starting Materials
3.2. Effect of Casting Process Parameters
3.3. Effect of Alumina Nanoparticle-Reinforced Sn Interlayer
3.3.1. Microstructure and Interface Structure
3.3.2. Interfacial Mechanical Properties
4. Conclusions
- The interfacial layer developed during tinning was composed of FeSn2 that was stable up to a temperature of 496 °C [37]. In the case of low mold preheating (170 °C) and molten Al-bearing alloy (720 °C), the interfacial layer was irregular and not fully coherent and continuous. However, by increasing the mold’s preheating temperature to 350 °C and Al-bearing alloy melting temperature to 770 °C, a regular, coherent, and continuous interfacial layer was successfully developed.
- An increase in Al-bearing alloy pouring temperature and mold preheat potentially dissolved the FeSn2 layer. Consequently, mass transfer of the Al to the steel substrate increased, leading to the formation of a regular and continuous interfacial layer. The interfacial layer formed between the steel/Al-bearing composite was composed of Al5Fe2, in agreement with previous studies.
- By improving the process parameters, the shear strength of the steel/Al-bearing alloy surprisingly increased by 500%. The increase in the shear strain was 280%, which is also an extraordinary finding of this study.
- Further increase in the shear strength was recorded by loading 0.25% Al2O3 nanoparticles in the Sn layer, and the findings are in agreement with the previous studies.
- Higher Al2O3 nanoparticles loadings (0.50% to 1.50%) are not recommended due to Al2O3 nanoparticles agglomerations between the interfacial layer and Al-bearing coating. Such microstructural discrepancies are sources of failure in materials, as they act as stress raiser points during loading.
- Two types of interfacial layers composed of AlFe3 and Al5Fe2 were observed by increasing Al2O3 nanoparticles loadings to 0.50% and beyond. Heat accumulation and coating time are two key factors that facilitate the development of two layers instead of one. Moreover, AlFe3 formed adjacent to the steel substrate, and Al5Fe2 formed close to the Al-bearing alloy.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ramadan, M.; El-Bagoury, N.; Fathy, N.; Waly, M.A.; Nofal, A.A. Microstructure, fluidity, and mechanical properties of semi-solid processed ductile iron. J. Mater. Sci. 2011, 46, 4013–4019. [Google Scholar] [CrossRef]
- Ramadan, M.; Nofal, A.A.; Elmahalawi, I.; Abdel-Karim, R. Influence of graphite nodularity on microstructure and processing window of 1.5% Ni-0.3% Mo austempered cast iron. Mater. Sci. Eng. A 2006, 435, 564–572. [Google Scholar] [CrossRef]
- Ramadan, M.; Fathy, N. Solidification microstructure of rheocast hyper-eutectic Al–18Si alloy. J. Metall. Eng. 2013, 2, 149–153. [Google Scholar]
- Gawronski, J.; Szajnar, J.; Wro’bel, P. Study on theoretical bases of receiving composite alloy layers on surface of cast steel castings. J. Mater. Process. Technol. 2004, 157, 679–682. [Google Scholar] [CrossRef]
- Tayal, R.K.; Kumar, S.; Singh, V.; Garg, R. Characterization and microhardness evaluation of A356/Mg joint produced by vacuum-assisted sand mold compound casting process. Int. J. Metalcast. 2019, 13, 392–406. [Google Scholar] [CrossRef]
- Tayal, R.K.; Kumar, S.; Singh, V.; Gupta, A.; Ujjawal, D. Experimental investigation and evaluation of joint strength of A356/ Mg bimetallic fabricated using compound casting process. Int. J. Metalcast. 2019, 13, 686–699. [Google Scholar] [CrossRef]
- Kmita, A.; Dańko, R.; Holtzer, M.; Hutera, B.; Stypuła, B. Utilisation of nanoparticles in technologies of producing castings for the needs of power engineering. Nanomater. Energy 2014, 3, 53–60. [Google Scholar] [CrossRef]
- Bawane, K.; Lu, K. Microstructure evolution of nanostructured ferritic alloy with and without Cr3C2 coated SiC at high temperatures. J. Mater. Sci. Technol. 2020, 43, 126–134. [Google Scholar] [CrossRef]
- Jiang, S.H.; Wang, H.; Wu, Y.; Liu, X.; Chen, H.; Yao, M.; Gault, B.; Ponge, D.; Raabe, D.; Hirata, A.; et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. Nature 2017, 544, 460–464. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, E.; Pérez, A.; Mercado-Solis, R.D.; Abraham, V.-T.; Jiménez, O.; Flores, M.; González, M.A.; Ibarra, J. Erosion problem in tool steel using cold box core-making process. China Foundry 2019, 16, 204–210. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Zhang, Z.P.; Hou, J.Y.; Barber, G.C.; Qiu, F. Tribological behavior of shot peened/austempered AISI 5160 steel. Tribol. Int. 2020, 106197, 145. [Google Scholar] [CrossRef]
- Li, H.C.; Liu, Y.X.; Zhang, Y.H.; Liu, Z.; Zhai, Q.-J. Effects of hot top pulsed magneto-oscillation on solidification structure of steel ingot. China Foundry 2018, 15, 110–116. [Google Scholar] [CrossRef] [Green Version]
- Hao, L.H.; Ji, X.; Zhang, G.Q.; Zhao, W.; Sun, M.; Peng, Y. Carbide precipitation behavior and Mechanical properties of micro-alloyed medium Mn steel. J. Mater. Sci. Technol. 2020, 47, 122–130. [Google Scholar] [CrossRef]
- Liu, Y.C.; Liu, C.X.; Sommer, F.; Mittemeijer, E.J. Martensite formation kinetics of substitutional Fe–0.7at.% Al alloy under uniaxial compressive stress. Acta Mater. 2015, 98, 164–174. [Google Scholar] [CrossRef]
- Zhang, H.J.; Li, C.; Guo, Q.Y.; Ma, Z.; Li, H.; Liu, Y. Improving creep resistance of nickel-based superalloy Inconel 718 by tailoring gamma double prime variants. Scr. Mater. 2019, 164, 66–70. [Google Scholar] [CrossRef]
- Zhang, K. Design of real time monitor system of manufacture process of iron and steel industry based on new style sensors. Energy Procedia Part A 2012, 16, 627–632. [Google Scholar] [CrossRef] [Green Version]
- Melchers, R.E. Long-term corrosion of cast irons and steel in marine and atmospheric environments. Corros. Sci. 2013, 68, 186–194. [Google Scholar] [CrossRef]
- Chen, B.; Yang, J.X.; Ouyang, Z.Y. Life cycle assessment of internal recycling options of steel slag in Chinese iron and steel industry. J. Iron Steel Res. Int. 2011, 18, 33–40. [Google Scholar] [CrossRef]
- Qiu, F.; Liu, T.-S.; Zhang, X.; Chang, F.; Shu, S.-L.; Yang, H.-Y.; Zhao, Q.-L.; Jiang, Q.-C. Application of nanoparticles in cast steel: An overview. China Foundry 2020, 17, 111–126. [Google Scholar] [CrossRef]
- Ramadan, M. Interface characterization of bimetallic casting with a 304 stainless steel surface layer and a gray cast iron base. Adv. Mater. Res. 2015, 1120, 993–998. [Google Scholar] [CrossRef]
- Wróbel, T. Bimetallic layered castings alloy steel–grey cast iron. Arch. Mater. Sci. Eng. 2011, 48, 118–125. [Google Scholar]
- Zhao, J.; Zhao, W.; Qu, S.; Zhang, Y. Microstructures and mechanical properties of AZ91D/0Cr19Ni9 bimetal composite prepared by liquid−solid compound casting. Trans. Nonferrous Met. Soc. China 2019, 29, 51–58. [Google Scholar] [CrossRef]
- Shin, J.; Kim, T.; Lim, K.; Cho, H.; Yang, D.; Jeong, C.; Yi, S. Effects of steel type and sandblasting pretreatment on the solid-liquid compound casting characteristics of zinc-coated steel/aluminum bimetals. J. Alloys Compd. 2019, 778, 170–185. [Google Scholar] [CrossRef] [Green Version]
- Fathy, N.; Ramadan, M. Influence of volume ratio of liquid to solid and low pouring temperature on interface structure of cast Babbitt-steel bimetal composite. AIP Conf. Proc. 2018, 1966, 020028. [Google Scholar] [CrossRef]
- Ramadan, M.; Alghamdi, A.S.; Subhani, T.; Halim, K.S.A. Fabrication and characterization of Sn-based babbitt alloy nanocomposite reinforced with Al2O3 nanoparticles/carbon steel bimetallic material. Materials 2020, 13, 2759. [Google Scholar] [CrossRef]
- Ramadan, M.; Ayadi, B.; Rajhi, W.; Alghamdi, A.S. Influence of Tinning Material on Interfacial Microstructures and Mechanical Properties of Al12Sn4Si1Cu /Carbon Steel Bimetallic Castings for Bearing Applications. Key Eng. Mater. 2020, 835, 108–114. [Google Scholar] [CrossRef]
- Ramadan, M.; Hafez, K.M.; Alghamdi, A.S.; Ayadi, B.; Halim, K.S.A. Novel Approach for Using Ductile Iron as Substrate in Bimetallic Materials for Higher Interfacial Bonding Bearings. Inter. Met. Cast 2021, 11, 145. [Google Scholar]
- Ramadan, M.; Alghamdi, A.S.; Hafez, K.M.; Subhani, T.; Halim, K.S.A. Development and Optimization of Tin/Flux Mixture for Direct Tinning and Interfacial Bonding in Aluminum/Steel Bimetallic Compound Casting. Materials 2020, 13, 5642. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, A.S.; Halim, K.S.A.; Amin, M.A.; Alshammari, A.S.; Fathy, N.; Ramadan, M. Interfacial Microstructure and Corrosion Behaviour of Mild Steel Coated with Alumina Nanoparticles Doped Tin Composite via Direct Tinning Route. Coatings 2021, 11, 1318. [Google Scholar] [CrossRef]
- Ayadi, B.; Ramadan, M. Novel and simple technique for interfacial shear strength of liquid-solid compound casting specimen. Mater. Today Proc. 2021, 47, 2299–2304. [Google Scholar] [CrossRef]
- Khaliq, A.; Parker, D.J.; Setargew, N.; Qian, M. Fabrication of the τ5c Intermetallic Compound Monoliths by a Novel Powder Metallurgy and Hot Dipping Approach. J. Metall. Mater. Trans. B 2020, 51, 836–849. [Google Scholar] [CrossRef]
- Khaliq, A.; Parker, D.J.; Setargew, N.; Kondoh, K.; Qian, M. Dissolution Kinetics of Iron-based Intermetallic Compounds (τ5c IMCs) in a Commercial Steel Strip Metallic Alloy Coating Process. J. Metall. Mater. Trans. B 2021, 52, 41–50. [Google Scholar] [CrossRef]
- Tikale, S.; Prabhu, K.N. Development of low-silver content SAC0307 solder alloy with Al2O3 nanoparticles. Mater. Sci. Eng. A 2020, 787, 139439. [Google Scholar] [CrossRef]
- Durandet, Y.; Strezov, L.; Ebrill, N. Formation of Al–Zn–Si Coatings on Low Carbon Steel Substrates. Galvatech 1998, 98, 147–152. [Google Scholar]
- Raghavan, V. Al-Fe-Si (Aluminum-Iron-Silicon). J. Phase Equilibria 2002, 23, 184–188. [Google Scholar] [CrossRef]
- Tenaris, M.G.; Egli, W.A.; Perez, T.; Zubimendi, J.L.; Benítez, G.J. Formation of an Fe-Sn Intermetallic Layer During the Reflow Process After Tin Plating. Plat. Surf. Finish. 2003, 90, 44–49. [Google Scholar]
- Dionisio, P.H.; de Barros, B.A.S., Jr.; Baumvol, I.J.R. Intermetallic phases formed during tin implantation into iron and steels. J. Appl. Phys. 1984, 55, 4219–4224. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.C.H.; Wollants, P.; Delaey, L. Thermodynamic evaluation of Fe-Sn phase diagram. Calphad 1996, 20, 139–149. [Google Scholar] [CrossRef]
- Setargew, N.; Hodges, J.; Parker, D. Dross Intermetallic Formation and the Alloy Layer in 55%Al-Zn Coating Systems. In Proceedings of the Steel Research Hub–Program C Meeting, Wollongong, Australia, 18 December 2015. [Google Scholar]
- Khaliq, A.; Subhani, T.; Ali, H. Analysis of 316L Stainless Steel Interaction with Galvanizing Alloy Bath. Microsc. Microanal. 2020, 26, 2884–2886. [Google Scholar] [CrossRef]
- Raja, V.; Kavitha, M.; Chokkalingam, B.; Ashraya, T.S. Effect of Interlayers on Mechanical Properties of Aluminium Casting over Stainless Steel Pipe for Heat Exchanger Applications. Trans. Indian Inst. Met. 2020, 73, 1555–1560. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, M.; Bian, X.; Liu, M.; Li, J. An Al–7Si alloy/cast iron bimetallic composite with super-high shear strength. J. Mater. Res. Technol. 2019, 8, 3126–3136. [Google Scholar] [CrossRef]
Chemical Composition | C | Sn | Si | Mn | Cu | Cr | Ni | Al | Fe |
---|---|---|---|---|---|---|---|---|---|
Al-bearing alloy | - | 12 | 4 | 1 | - | - | Bal. | - | |
Steel substrate | 0.14 | - | 0.30 | 0.41 | 0.20 | 0.14 | 0.09 | - | Bal. |
Casting Process Designation | Tinning Process | Tinned Steel Preheating | Pouring Temp. °C | Mould Preheating | ||
---|---|---|---|---|---|---|
Temp, °C | Time, s | Temp, °C | Time, s | Temp, °C | Temp, °C | |
Bimetal A | 350 | 120 | 350 | 120 | 720 | 170 |
Bimetal B | 350 | 180 | 350 | 180 | 770 | 350 |
S.N. | Pre-Tinning and Process Parameters Conditions |
---|---|
Specimen 0 (S0) | Bimetal with Process parameters A using pure Sn interlayer, bimetal A |
Specimen 1 (S1) | Bimetal with Process parameters B using pure Sn interlayer, bimetal B |
Specimen 2 (S2) | Bimetal with Process parameters B using Sn + 0.25 alumina nanoparticles interlayer |
Specimen 3 (S3) | Bimetal with Process parameters B using Sn + 0.50 alumina nanoparticles interlayer |
Specimen 4 (S4) | Bimetal with Process parameters B using Sn + 1.00 alumina nanoparticles interlayer |
Specimen 5 (S5) | Bimetal with Process parameters B using Sn + 1.50 alumina nanoparticles interlayer |
Point No. | Sample No. | Element Compositions (at. %) | Interface Layers Nos. | Interface Component | ||||
---|---|---|---|---|---|---|---|---|
Al | Fe | Si | Sn | O | ||||
1 | 1 | 67.51 | 18.25 | 13.93 | 0.31 | - | 1 | Fe2Al5, Al8Fe2Si |
2 | 65.70 | 21.59 | 12.60 | 0.10 | - | |||
3 | 2 | 66.48 | 13.53 | 11.69 | 0.83 | 7.47 | 1 | Al4.5SiFe, Al2O3 |
4 | 66.55 | 16.34 | 12.87 | 0.15 | 3.93 | |||
5 | 3 | 65.34 | 17.56 | 13.39 | - | 3.71 | 2 | Fe2Al5, Al8Fe2Si, Al2O3 |
6 | 67.02 | 22.65 | 6.01 | - | 4.17 | FeAl3, Al2Fe3Si3, Al2O3 | ||
7 | 4 | 64.72 | 19.11 | 11.27 | - | 4.89 | 2 | Fe2Al5, Al8Fe2Si, Al2O3 |
8 | 59.40 | 23.36 | 9.52 | - | 7.71 | FeAl3, Al2Fe3Si3, Al2O3 | ||
9 | 5 | 52.01 | 02.45 | 3.59 | 10.9 | 30.42 | 2 | Sn, Al2O3 |
10 | 65.73 | 17.17 | 12.21 | 0.30 | 4.60 | Fe2Al5, Al8Fe2Si, Al2O3 |
Interlayer Material | Shear Stress, MPa | ||
---|---|---|---|
Deposition Process | |||
Hot Dipping | Electroplating | Direct Tinning | |
Brass | - | 17.5 [41] | - |
Al − 7.2 wt.% Si | 08.5 [42] | - | - |
Pure Zn | 16.0 [42] | 20.0 [23] | - |
Zn + 0.2 wt.% Bi | 32.0 [42] | ||
Pure Sn | - | - | 06.75 [28] |
Pure Sn (process parameter B) | - | - | 30.25 [this study] |
Sn + 0.25% Al2O3 Nanoparticles | - | - | 32.03 [this study] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramadan, M.; Khaliq, A.; Hafez, K.M.; Alghamdi, A.S.; Fathy, N.; Harraz, F.A.; Ayadi, B.; Abdel Halim, K.S. Super Bonding Strength of Al2O3 Nanoparticles Reinforced Sn Interlayer Steel/Aluminum Bimetal Casting. Crystals 2022, 12, 324. https://doi.org/10.3390/cryst12030324
Ramadan M, Khaliq A, Hafez KM, Alghamdi AS, Fathy N, Harraz FA, Ayadi B, Abdel Halim KS. Super Bonding Strength of Al2O3 Nanoparticles Reinforced Sn Interlayer Steel/Aluminum Bimetal Casting. Crystals. 2022; 12(3):324. https://doi.org/10.3390/cryst12030324
Chicago/Turabian StyleRamadan, Mohamed, Abdul Khaliq, K. M. Hafez, Abdulaziz S. Alghamdi, Naglaa Fathy, Farid A. Harraz, Badreddine Ayadi, and K. S. Abdel Halim. 2022. "Super Bonding Strength of Al2O3 Nanoparticles Reinforced Sn Interlayer Steel/Aluminum Bimetal Casting" Crystals 12, no. 3: 324. https://doi.org/10.3390/cryst12030324
APA StyleRamadan, M., Khaliq, A., Hafez, K. M., Alghamdi, A. S., Fathy, N., Harraz, F. A., Ayadi, B., & Abdel Halim, K. S. (2022). Super Bonding Strength of Al2O3 Nanoparticles Reinforced Sn Interlayer Steel/Aluminum Bimetal Casting. Crystals, 12(3), 324. https://doi.org/10.3390/cryst12030324