Characterization of Thermal, Ionic Conductivity and Electrochemical Properties of Some p-Tosylate Anions-Based Protic Ionic Compounds
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Methods
2.2.1. Synthesis of p-Toluene Sulfonic Acid Based Ionic Liquids
2.2.2. 1H and 13C NMR Analysis
2.2.3. FTIR Spectroscopy
2.2.4. Differential Scanning Calorimetry (DSC)
2.2.5. Thermogravimetric Analysis (TGA)
2.2.6. Electrochemical Impedance Spectroscopy (EIS)
2.2.7. Cyclic Voltammetry (CV)
3. Results and Discussion
3.1. 1H and 13C NMR Chemical Shifts
3.2. FTIR Spectroscopy
3.3. DSC Analysis
3.4. TGA Analysis
3.5. Electrochemical Impedance Spectroscopy (EIS) Analysis
3.6. Voltammetric Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scott, K.; Shukla, A.K. Polymer electrolyte membrane fuel cells: Principles and advances. Rev. Environ. Sci. Bio/Technol. 2004, 3, 273–280. [Google Scholar] [CrossRef]
- Whittingham, M.S.; Savinell, R.F.; Zawodzinski, T. Introduction: Batteries and Fuel Cells. Chem. Rev. 2004, 104, 4243–4244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muriithi, B.; Loy, D.A. Proton conductivity of Nafion/ex-situ sulfonic acid-modified stöber silica nanocomposite membranes as a function of temperature, silica particles size and surface modification. Membranes 2016, 6, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rikukawa, M.; Sanui, K. Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog. Polym. Sci. 2000, 25, 1463–1502. [Google Scholar] [CrossRef]
- Aoki, M.; Chikashige, Y.; Miyatake, K.; Uchida, H.; Watanabe, M. Durability of novel sulfonated poly (arylene ether) membrane in PEFC operation. Electrochem. Commun. 2006, 8, 1412–1416. [Google Scholar] [CrossRef]
- Myles, T.; Bonville, L.; Maric, R. Catalyst, membrane, free electrolyte challenges, and pathways to resolutions in high temperature polymer electrolyte membrane fuel cells. Catalysts 2017, 7, 16. [Google Scholar] [CrossRef] [Green Version]
- Haile, S.M. Fuel cell materials and components. Acta Mater. 2003, 51, 5981–6000. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Ogawa, A.; Kanno, M.; Nakamoto, H.; Yasuda, T.; Watanabe, M. Nonhumidified intermediate temperature fuel cells using protic ionic liquids. J. Am. Chem. Soc. 2010, 132, 9764–9773. [Google Scholar] [CrossRef]
- Li, Q.; He, R.; Jensen, J.O.; Bjerrum, N.J. Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 C. Chem. Mater. 2003, 15, 4896–4915. [Google Scholar] [CrossRef] [Green Version]
- Greaves, T.L.; Drummond, C.J. Protic ionic liquids: Properties and applications. Chem. Rev. 2008, 108, 206–237. [Google Scholar] [CrossRef]
- Angell, C.A.; Byrne, N.; Belieres, J.-P. Parallel developments in aprotic and protic ionic liquids: Physical chemistry and applications. Acc. Chem. Res. 2007, 40, 1228–1236. [Google Scholar] [CrossRef]
- Yoshizawa, M.; Xu, W.; Angell, C.A. Ionic liquids by proton transfer: Vapor pressure, conductivity, and the relevance of Δp K a from aqueous solutions. J. Am. Chem. Soc. 2003, 125, 15411–15419. [Google Scholar] [CrossRef]
- Abbott, A.P.; Dalrymple, I.; Endres, F.; MacFarlane, D.R. Why use ionic liquids for electrodeposition? Electrodepos. Ion. Liq. 2008, 1, 1–15. [Google Scholar]
- Freemantle, M. An introduction to ionic liquids; Royal Society of Chemistry Publishing: Cambridge, UK, 2010. [Google Scholar]
- Rogers, R.; Plechkova, N.; Seddon, K. Ionic liquids: From knowledge to application. In Proceedings of ACS Symposium Series; ACS Publications: Washington, DC, USA, 2009. [Google Scholar]
- Wasserscheid, P.; Welton, T. Ionic Liquids in Synthesis; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany.
- Lewandowski, A.; Świderska-Mocek, A. Ionic liquids as electrolytes for Li-ion batteries—An overview of electrochemical studies. J. Power Sources 2009, 194, 601–609. [Google Scholar] [CrossRef]
- Pringle, J.M.; Armel, V. The influence of ionic liquid and plastic crystal electrolytes on the photovoltaic characteristics of dye-sensitised solar cells. Int. Rev. Phys. Chem. 2011, 30, 371–407. [Google Scholar] [CrossRef] [Green Version]
- Shi, D.; Pootrakulchote, N.; Li, R.; Guo, J.; Wang, Y.; Zakeeruddin, S.M.; Grätzel, M.; Wang, P. New Efficiency Records for Stable Dye-Sensitized Solar Cells with Low-Volatility and Ionic Liquid Electrolytes. J. Phys. Chem. C 2008, 112, 17046. [Google Scholar] [CrossRef]
- Thorsmølle, V.K.; Rothenberger, G.; Topgaard, D.; Brauer, J.C.; Kuang, D.-B.; Zakeeruddin, S.M.; Lindman, B.; Grätzel, M.; Moser, J.-E. Extraordinarily efficient conduction in a redox-active ionic liquid. arXiv 2010, arXiv:1011.2182. [Google Scholar] [CrossRef] [Green Version]
- Armel, V.; Pringle, J.M.; Forsyth, M.; MacFarlane, D.R.; Officer, D.L.; Wagner, P. Ionic liquid electrolyte porphyrin dye sensitised solar cells. Chem. Commun. 2010, 46, 3146–3148. [Google Scholar] [CrossRef] [Green Version]
- Abraham, T.J.; MacFarlane, D.R.; Pringle, J.M. Seebeck coefficients in ionic liquids–prospects for thermo-electrochemical cells. Chem. Commun. 2011, 47, 6260–6262. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, L.C.; Correia, D.M.; Fernández, E.; Tariq, M.; Esperança, J.M.S.S.; Lanceros-Méndez, S. Design of Ionic-Liquid-Based Hybrid Polymer Materials with a Magnetoactive and Electroactive Multifunctional Response. ACS Appl. Mater. Interfaces 2020, 12, 42089–42098. [Google Scholar] [CrossRef]
- Correia, D.M.; Martins, P.; Tariq, M.; Esperança, J.M.S.S.; Lanceros-Méndez, S. Low-field giant magneto-ionic response in polymer-based nanocomposites. Nanoscale 2018, 10, 15747–15754. [Google Scholar] [CrossRef]
- Lu, J.; Yan, F.; Texter, J. Advanced applications of ionic liquids in polymer science. Prog. Polym. Sci. 2009, 34, 431–448. [Google Scholar] [CrossRef]
- Ogihara, W.; Kosukegawa, H.; Ohno, H. Proton-conducting ionic liquids based upon multivalent anions and alkylimidazolium cations. Chem. Commun. 2006, 3637–3639. [Google Scholar] [CrossRef]
- Nakamoto, H.; Watanabe, M. Brønsted acid–base ionic liquids for fuel cell electrolytes. Chem. Commun. 2007, 2539–2541. [Google Scholar] [CrossRef]
- Susan, M.A.; Noda, A.; Mitsushima, S.; Watanabe, M. Brønsted acid–base ionic liquids and their use as new materials for anhydrous proton conductors. Chem. Commun. 2003, 938–939. [Google Scholar] [CrossRef]
- Nakamoto, H.; Noda, A.; Hayamizu, K.; Hayashi, S.; Hamaguchi, H.-o.; Watanabe, M. Proton-Conducting properties of a brønsted Acid−Base ionic liquid and ionic melts consisting of bis (trifluoromethanesulfonyl) imide and benzimidazole for fuel cell electrolytes. J. Phys. Chem. C 2007, 111, 1541–1548. [Google Scholar] [CrossRef]
- Fernicola, A.; Scrosati, B.; Ohno, H. Potentialities of ionic liquids as new electrolyte media in advanced electrochemical devices. Ionics 2006, 12, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Siddique, T.; Balamurugan, S.; Said, S.; Sairi, N.; Normazlan, W. Synthesis and characterization of protic ionic liquids as thermoelectrochemical materials. RSC Adv. 2016, 6, 18266–18278. [Google Scholar] [CrossRef]
- Gupta, R.K.; Bedja, I.; Islam, A.; Shaikh, H. Electrical, structural, and thermal properties of succinonitrile-LiI-I-2 redox-mediator. Solid State Ion. 2018, 326, 166–172. [Google Scholar] [CrossRef]
- Gupta, R.K.; Shaikh, H.; Bedja, I. Understanding the Electrical Transport–Structure Relationship and Photovoltaic Properties of a [Succinonitrile–Ionic Liquid]–LiI–I2 Redox Electrolyte. ACS Omega 2020, 5, 12346–12354. [Google Scholar] [CrossRef]
- Shmukler, L.E.; Gruzdev, M.S.; Kudryakova, N.O.; Fadeeva, Y.A.; Kolker, A.M.; Safonova, L.P. Thermal behavior and electrochemistry of protic ionic liquids based on triethylamine with different acids. RSC Adv. 2016, 6, 109664–109671. [Google Scholar] [CrossRef]
- Gao, G.; Zhao, Q.; Yang, C.; Jiang, T. p-Toluenesulfonic acid functionalized imidazole ionic liquids encapsulated into bismuth SBA-16 as high-efficiency catalysts for Friedel–Crafts acylation reaction. Dalton Trans. 2021, 50, 5871–5882. [Google Scholar] [CrossRef] [PubMed]
- Miyan, L.; Qamar, S.; Ahmad, A. Synthesis, characterization and spectrophotometric studies of charge transfer interaction between donor imidazole and π acceptor 2‚4-dinitro-1-naphthol in various polar solvents. J. Mol. Liq. 2017, 225, 713–722. [Google Scholar] [CrossRef]
- Esperança, J.M.S.S.; Tariq, M.; Pereiro, A.B.; Araújo, J.M.M.; Seddon, K.R.; Rebelo, L.P.N. Anomalous and Not-So-Common Behavior in Common Ionic Liquids and Ionic Liquid-Containing Systems. Front. Chem. 2019, 7, 450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguirre, C.L.; Cisternas, L.A.; Valderrama, J.O. Melting-Point Estimation of Ionic Liquids by a Group Contribution Method. Int. J. Thermophys. 2012, 33, 34–46. [Google Scholar] [CrossRef]
- Ganapatibhotla, L.V.N.R.; Wu, L.; Zheng, J.; Jia, X.; Roy, D.; McLaughlin, J.B.; Krishnan, S. Ionic liquids with fluorinated block-oligomer tails: Influence of self-assembly on transport properties. J. Mater. Chem. 2011, 48, 19275–19285. [Google Scholar] [CrossRef]
- Ganapatibhotla, L.V.N.R.; Zheng, J.; Roy, D.; Krishnan, S. PEGylated Imidazolium Ionic Liquid Electrolytes: Thermophysical and Electrochemical Properties. Chem. Mater. 2010, 22, 6347–6360. [Google Scholar] [CrossRef]
- Pires, J.; Timperman, L.; Jacquemin, J.; Balducci, A.; Anouti, M. Density, conductivity, viscosity, and excess properties of (pyrrolidinium nitrate-based Protic Ionic Liquid+propylene carbonate) binary mixture. J. Chem. Thermodyn. 2013, 59, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Shmukler, L.E.; Gruzdev, M.S.; Kudryakova, N.O.; Fadeeva, Y.A.; Kolker, A.M.; Safonova, L.P. Triethylammonium-based protic ionic liquids with sulfonic acids: Phase behavior and electrochemistry. J. Mol. Liq. 2018, 266, 139–146. [Google Scholar] [CrossRef]
ILs | δH(ppm) | δC(ppm) | ||||||
---|---|---|---|---|---|---|---|---|
CH3 | CH Near CH3 | CH Near SO3H | CH3 | C-C-SO3− | C-C-CH3 | C-CH3 | C-SO3− | |
PTSA | 2.096 | 6.946 | 7.438 | 20.638 | 124.98 | 128.497 | 140.125 | 140.430 |
[Im][PTS] | 2.302 | 7.128 | 7.698 | 21.220 | 121.410 | 125.722 | 136.319 | 140.020 |
[Pyrr][PTS] | 2.321 | 7.130 | 7.673 | 21.239 | 125.760 | 128.868 | 140.373 | 141.603 |
[Pip][PTS] | 2.099 | 7.248 | 7.759 | 21.325 | 125.960 | 128.860 | 140.382 | 141.517 |
[TEA][PTS] | 2.311 | 7.140 | 7.718 | 21.268 | 125.855 | 128.726 | 139.962 | 142.223 |
[TEPA][PTS] | 2.249 | 6.983 | 7.581 | 20.991 | 125.207 | 128.612 | 139.772 | 142.109 |
[Py][PTS] | 2.329 | 7.150 | 7.784 | 21.325 | 125.960 | 128.860 | 140.373 | 141.546 |
Compound Symbol | Compound Name | Tm °C | ΔTm (J/g) | Tc °C | ΔTc (J/g) | Tdec °C |
---|---|---|---|---|---|---|
[TEPA][PTS] | Tetraethylenepentammonium p-toluenesulfonate | 113.72 | 0.54 | 101.28 | 5.89 | 241 |
[TEA][PTS] | Triethylammonium p-toluenesulfonate | 76.75 | 96.80 | 20.05 | 95.21 | 270 |
[Py][PTS] | Pyridinium p-toluenesulfonate | 117.82 | 48.09 | 74.71 | 43.04 | 213 |
[Im][PTS] | 1-Methylimidazolium p-toluenesulfonate | 89.71 | 22.16 | 59.32 | 39.92 | 284 |
[Pip][PTS] | N-methyl Piperidinium p-toluenesulfonate | 106.81 | 54.90 | 23.67 | 52.09 | 286 |
[Pyrr][PTS] | N-methyl Pyrrolidinium p-toluenesulfonate | 87.12 | 42.61 | 26.01 | 51.38 | 276 |
Compound Symbol | Compound Name | σ65 °C (S cm−1) | B (eV) |
---|---|---|---|
[Pyrr][PTS] | N-methyl Pyrrolidinium p-toluenesulfonate | 8.1 × 10−3 | 0.038 |
[Im][PTS] | 1-Methylimidazolium p-toluenesulfonate | 4.4 × 10−3 | 0.028 |
[Pip][PTS] | N-methyl Piperidinium p-toluenesulfonate | 3.4 × 10−3 | 0.063 |
[TEA][PTS] | Triethylammonium p-toluenesulfonate | 2.8 × 10−3 | 0.038 |
[TEPA][PTS] | Tetraethylenepentammonium p-toluenesulfonate | 4.3 × 10−4 | 0.063 |
[Py][PTS] | Pyridinium p-toluenesulfonate | 6.8 × 10−5 | 0.079, 0.054 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anis, A.; Alam, M.; Alhamidi, A.; Alam, M.A.; Gupta, R.K.; Tariq, M.; Shaikh, H.; Poulose, A.M.; Al-Zahrani, S.M. Characterization of Thermal, Ionic Conductivity and Electrochemical Properties of Some p-Tosylate Anions-Based Protic Ionic Compounds. Crystals 2022, 12, 507. https://doi.org/10.3390/cryst12040507
Anis A, Alam M, Alhamidi A, Alam MA, Gupta RK, Tariq M, Shaikh H, Poulose AM, Al-Zahrani SM. Characterization of Thermal, Ionic Conductivity and Electrochemical Properties of Some p-Tosylate Anions-Based Protic Ionic Compounds. Crystals. 2022; 12(4):507. https://doi.org/10.3390/cryst12040507
Chicago/Turabian StyleAnis, Arfat, Manawwer Alam, Abdullah Alhamidi, Mohammad Asif Alam, Ravindra Kumar Gupta, Mohammad Tariq, Hamid Shaikh, Anesh Manjaly Poulose, and Saeed M. Al-Zahrani. 2022. "Characterization of Thermal, Ionic Conductivity and Electrochemical Properties of Some p-Tosylate Anions-Based Protic Ionic Compounds" Crystals 12, no. 4: 507. https://doi.org/10.3390/cryst12040507
APA StyleAnis, A., Alam, M., Alhamidi, A., Alam, M. A., Gupta, R. K., Tariq, M., Shaikh, H., Poulose, A. M., & Al-Zahrani, S. M. (2022). Characterization of Thermal, Ionic Conductivity and Electrochemical Properties of Some p-Tosylate Anions-Based Protic Ionic Compounds. Crystals, 12(4), 507. https://doi.org/10.3390/cryst12040507