Crucial Role of Oxygen Vacancies in Scintillation and Optical Properties of Undoped and Al-Doped β-Ga2O3 Single Crystals
Abstract
:1. Introduction
2. Experimental Procedure
3. Experimental Results and Discussion
- Increases Ga3+ ions and VGa acceptors, as well as reduces VO donors by filling the oxygen vacancies VO with oxygen and forming O2− (process num. 1).
- Increases release of more charge carriers (electron, holes) that are in impurity levels (donors, acceptors) to conduction and valence bands, as they are captured again via self-trapped excitons accompanied by a UV photon emission (process num. 2).
- UV′ and blue emissions occur by transferring an electron trapped on a donor site (VO) to a hole created on an acceptor (VGa or VO, VGa) after the acceptor’s excitation (process num. 3)
- Decrease in the blue luminescence intensity has two reasons, the first is due to an increase in VGa acceptors and a decrease in VO donors at the expense of (VO, VGa) pairs, and the second is due to the excited carriers in levels have a high probability to non-radiative recombination transfer (process num 4).
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dujardin, C.; Auffray, E.; Bourret-Courchesne, E.; Dorenbos, P.; Lecoq, P.; Nikl, M.; Vasil’ev, A.N.; Yoshikawa, A.; Zhu, R.Y. Needs, Trends, and Advances in Inorganic Scintillators. IEEE Trans. Nucl. Sci. 2018, 65, 1977–1997. [Google Scholar] [CrossRef] [Green Version]
- Derenzo, S.E.; Weber, M.J.; Bourret-Courchesne, W.E.; Klintenberg, M.K. The quest for the ideal inorganic scintillator. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 2003, 505, 111–117. [Google Scholar] [CrossRef]
- Yue, S.Q.; Gu, M.; Liu, X.L.; Li, F.R.; Liu, S.Y.; Zhang, X.; Zhang, J.N.; Liu, B.; Huang, S.M.; Ni, C. Optimization of crystal growth and properties of gamma-CuI ultrafast scintillator by the addition of LiI. Mater. Res. Bull. 2018, 106, 228–233. [Google Scholar] [CrossRef]
- Pearton, S.J.; Yang, J.C.; Cary, P.H.; Ren, F.; Kim, J.; Tadjer, M.J.; Mastro, M.A. A review of Ga2O3 materials, processing, and devices. Appl. Phys. Rev. 2018, 5, 56. [Google Scholar] [CrossRef] [Green Version]
- Yanagida, T.; Okada, G.; Kato, T.; Nakauchi, D.; Yanagida, S. Fast and high light yield scintillation in the Ga2O3 semiconductor material. Appl. Phys. Express 2016, 9, 4. [Google Scholar] [CrossRef]
- Usui, Y.; Oya, T.; Okada, G.; Kawaguchi, N.; Yanagida, T. Ce-doped Ga2O3 single crystalline semiconductor showing scintillation features. Optik 2017, 143, 150–157. [Google Scholar] [CrossRef]
- Mykhaylyk, V.B.; Kraus, H.; Kapustianyk, V.; Rudko, M. Low temperature scintillation properties of Ga2O3. Appl. Phys. Lett. 2019, 115, 5. [Google Scholar] [CrossRef]
- Galazka, Z.; Schewski, R.; Irmscher, K.; Drozdowski, W.; Witkowski, M.E.; Makowski, M.; Wojtowicz, A.J.; Hanke, I.M.; Pietsch, M.; Schulz, T.; et al. Bulk beta-Ga2O3 single crystals doped with Ce, Ce plus Si, Ce plus Al, and Ce plus Al plus Si for detection of nuclear radiation. J. Alloys Compd. 2020, 818, 7. [Google Scholar] [CrossRef]
- Binet, L.; Gourier, D. Origin of the blue luminescence of beta-Ga2O3. J. Phys. Chem. Solids 1998, 59, 1241–1249. [Google Scholar] [CrossRef]
- He, N.T.; Tang, H.L.; Liu, B.; Zhu, Z.C.; Li, Q.; Guo, C.; Gu, M.; Xu, J.; Liu, J.L.; Xu, M.X.; et al. Ultra-fast scintillation properties of beta-Ga2O3 single crystals grown by Floating Zone method. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 2018, 888, 9–12. [Google Scholar] [CrossRef]
- Cui, H.Y.; Mohamed, H.F.; Xia, C.T.; Sai, Q.L.; Zhou, W.; Qi, H.J.; Zhao, J.T.; Si, J.L.; Ji, X.L. Tuning electrical conductivity of beta-Ga2O3 single crystals by Ta doping. J. Alloys Compd. 2019, 788, 925–928. [Google Scholar] [CrossRef]
- Ueda, N.; Hosono, H.; Waseda, R.; Kawazoe, H. Synthesis and control of conductivity of ultraviolet transmitting beta-Ga2O3 single crystals. Appl. Phys. Lett. 1997, 70, 3561–3563. [Google Scholar] [CrossRef]
- Tauc, J. Amorphous and Liquid Semiconductors; Springer: Boston, MA, USA, 1974; p. 159. [Google Scholar]
- Galazka, Z.; Ganschow, S.; Fiedler, A.; Bertram, R.; Klimm, D.; Irmscher, K.; Schewski, R.; Pietsch, M.; Albrecht, M.; Bickermann, M. Doping of Czochralski-grown bulk beta-Ga2O3 single crystals with Cr, Ce and Al. J. Cryst. Growth 2018, 486, 82–90. [Google Scholar] [CrossRef]
- Bhaumik, I.; Soharab, M.; Bhatt, R.; Saxena, A.; Sah, S.; Karnal, A.K. Influence of Al content on the optical band-gap enhancement and lattice structure of (Ga1−xAlx)(2)O3 single crystal. Opt. Mater. 2020, 109, 6. [Google Scholar] [CrossRef]
- Feng, Z.Q.; Huang, L.; Feng, Q.; Li, X.; Zhang, H.; Tang, W.H.; Zhang, J.C.; Hao, Y. Influence of annealing atmosphere on the performance of a beta-Ga2O3 thin film and photodetector. Opt. Mater. Express 2018, 8, 2229–2237. [Google Scholar] [CrossRef]
- Tang, H.L.; He, N.T.; Zhu, Z.C.; Gu, M.; Liu, B.; Xu, J.; Xu, M.X.; Chen, L.; Liu, J.L.; Ouyang, X.P. Temperature-dependence of X-ray excited luminescence of beta-Ga2O3 single crystals. Appl. Phys. Lett. 2019, 115, 5. [Google Scholar] [CrossRef]
- Feng, H.; Ding, D.Z.; Li, H.Y.; Lu, S.; Pan, S.K.; Chen, X.F.; Ren, G.H. Annealing effects on Czochralski grown Lu2Si2O7: Ce3+ crystals under different atmospheres. J. Appl. Phys. 2008, 103, 7. [Google Scholar] [CrossRef]
- Gao, H.T.; Muralidharan, S.; Pronin, N.; Karim, M.R.; White, S.M.; Asel, T.; Foster, G.; Krishnamoorthy, S.; Rajan, S.; Cao, L.R.; et al. Optical signatures of deep level defects in Ga2O3. Appl. Phys. Lett. 2018, 112, 5. [Google Scholar] [CrossRef]
- Kaun, S.W.; Wu, F.; Speck, J.S. beta-(AlxGa1−x)(2)O3/Ga2O3 (010) heterostructures grown on beta-Ga2O3 (010) substrates by plasma-assisted molecular beam epitaxy. J. Vac. Sci. Technol. A 2015, 33, 9. [Google Scholar] [CrossRef]
- Ma, X.F.; Zhang, Y.M.; Dong, L.P.; Jia, R.X. First-principles calculations of electronic and optical properties of aluminum-doped beta-Ga2O3 with intrinsic defects. Results Phys. 2017, 7, 1582–1589. [Google Scholar] [CrossRef]
- Onuma, T.; Nakata, Y.; Sasaki, K.; Masui, T.; Yamaguchi, T.; Honda, T.; Kuramata, A.; Yamakoshi, S.; Higashiwaki, M. Modeling and interpretation of UV and blue luminescence intensity in beta-Ga2O3 by silicon and nitrogen doping. J. Appl. Phys. 2018, 124, 6. [Google Scholar] [CrossRef]
- Varley, J.B.; Janotti, A.; Franchini, C.; Van de Walle, C.G. Role of self-trapping in luminescence and p-type conductivity of wide-band-gap oxides. Phys. Rev. B 2012, 85, 4. [Google Scholar] [CrossRef] [Green Version]
- Shi, Q.; Wang, Q.R.; Zhang, D.; Wang, Q.L.; Li, S.H.; Wang, W.J.; Fan, Q.L.; Zhang, J.Y. Structural, optical and photoluminescence properties of Ga2O3 thin films deposited by vacuum thermal evaporation. J. Lumines. 2019, 206, 53–58. [Google Scholar] [CrossRef]
- Vasiltsiv, V.I.; Zakharko, Y.M.; Rym, Y.I. On the nature of blue and green luminescence bands of BETA-Ga2O3. Ukr. Fiz. Zhurnal 1988, 33, 1320–1324. [Google Scholar]
- Ahmadi, E.; Koksaldi, O.S.; Zheng, X.; Mates, T.; Oshima, Y.; Mishra, U.K.; Speck, J.S. Demonstration of beta-(AlxGa1−x)(2)O3/beta-Ga2O3 modulation doped field-effect transistors with Ge as dopant grown via plasma-assisted molecular beam epitaxy. Appl. Phys. Express 2017, 10, 4. [Google Scholar] [CrossRef]
Sample x | β-Ga2O3 as-Grown | β-Ga2O3 as-O2 Annealed | β-Ga2O3 as-N2 Annealed | Al:β-Ga2O3 as-Grown | Al:β-Ga2O3 as-O2 Annealed | Al:β-Ga2O3 as-N2 Annealed |
---|---|---|---|---|---|---|
X-ray excited luminescence | ||||||
XEL-UV(eV), Contr.% | 3.62, 31.51 | 3.61, 36.59 | 3.64, 28.52 | 3.69, 33.3 | 3.678, 19.19 | 3.68, 27.90 |
XEL-UV′(eV), Contr.% | 3.25, 12.60 | 3.26, 21.73 | 3.27, 16.5 | 3.26, 34 | 3.27, 29.16 | 3.30, 28.83 |
XEL-Blue(eV), Contr.% | 3.16, 55.87 | 3.06, 41.66 | 3.15, 54.92 | 2.87, 32.25 | 2.93, 51.63 | 3.009, 43.25 |
Photoluminscence | ||||||
PL-UV(eV), Contr.% | 3.51, 12.05 | 3.48, 17.65 | 3.37, 18.95 | |||
PL-UV′(eV), Contr.% | 3.20, 25.82 | 3.10, 45.35 | 2.93, 31.50 | 3.01 44.54 | 3.02 43.98 | 3.07 49.24 |
PL-Blue(eV), Contr.% | 2.52, 62.12 | 2.57, 36.99 | 2.50, 49.53 | 2.60 55.46 | 2.47 56.02 | 2.72 50.76 |
Optical transmission | ||||||
Eg(eV) | 4.69 | 4.71 | 4.71 | 4.76 | 4.76 | 4.76 |
PL decay time | ||||||
τ1 (ns), Contri. % | 5.22 2.78 | 6.85 0.98 | 7.72 2.54 | 2.33 68.02 | 3.34 62.45 | 4.26 9.31 |
τ2 (ns), Contri. % | 54.25, 17.61 | 65.70 11.04 | 55.17 27.79 | 41.58 6.35 | 38.14 6.87 | 41.64 20.48 |
τ3 (ns), Contri. % | 206.5 79.61 | 271.69 87.98 | 153.7 69.66 | 276.77 25.63 | 220.19 30.69 | 170.81 70.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, R.; Pan, M.; Sai, Q.; Zhang, L.; Qi, H.; Mohamed, H.F. Crucial Role of Oxygen Vacancies in Scintillation and Optical Properties of Undoped and Al-Doped β-Ga2O3 Single Crystals. Crystals 2022, 12, 429. https://doi.org/10.3390/cryst12030429
Tian R, Pan M, Sai Q, Zhang L, Qi H, Mohamed HF. Crucial Role of Oxygen Vacancies in Scintillation and Optical Properties of Undoped and Al-Doped β-Ga2O3 Single Crystals. Crystals. 2022; 12(3):429. https://doi.org/10.3390/cryst12030429
Chicago/Turabian StyleTian, Ruifeng, Mingyan Pan, Qinglin Sai, Lu Zhang, Hongji Qi, and Hany Fathy Mohamed. 2022. "Crucial Role of Oxygen Vacancies in Scintillation and Optical Properties of Undoped and Al-Doped β-Ga2O3 Single Crystals" Crystals 12, no. 3: 429. https://doi.org/10.3390/cryst12030429
APA StyleTian, R., Pan, M., Sai, Q., Zhang, L., Qi, H., & Mohamed, H. F. (2022). Crucial Role of Oxygen Vacancies in Scintillation and Optical Properties of Undoped and Al-Doped β-Ga2O3 Single Crystals. Crystals, 12(3), 429. https://doi.org/10.3390/cryst12030429