The Effect of Slag on the Mechanical Properties of Coralline-Activated Materials and the Formation and Transformation of Mineral Crystals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Coral Powder and Granulated Blast Furnace Slag Powder
2.1.2. Sodium Hydroxide and Liquid Sodium Silicate
2.1.3. Other Materials
2.2. Sample Preparation
2.2.1. Mix Proportions of the Samples
2.2.2. Sample Preparation and Curing
2.3. Experimental Methods
2.3.1. Determination of Active Substance Content and Reaction Activity
- (1)
- Acid dissolution: 10 g sample (CP or GSP) was dissolved in 100 mL hydrochloric acid with a concentration of 1 mol/L and mixed evenly. The mixture was heated in boiling water for 15 min and then filtered. The filtered residue was obtained via alkali dissolution.
- (2)
- Alkali dissolution: The filtered residue was dissolved in 100 mL NaOH solution with a 1 mol/L concentration and stirred evenly. It was then placed in boiling water for 15 min, and the insoluble residue was filtered out.
- (3)
- Drying and determination: The insoluble residue was calcined in a muffle furnace at 1000 °C for 30 min. After calcination, residual solid mass was measured, and the contents of chemical components were analyzed again via XRF. The insoluble substance is used as the inert substance without polymerization activity.
- (4)
- Calcination: The mass loss after the chemical dissolution was used as the reactive activity and was calculated from Equation (1).
2.3.2. Compressive Strength Test
2.3.3. XRD Measurements
3. Results and Discussions
3.1. Chemical Composition and Reactivity Analysis
3.2. Compressive Strength Analysis
3.2.1. Pure CP and GPS Alkali-Activated Samples
3.2.2. Analysis of GPS Modified CP
3.3. XRD Analysis
3.3.1. XRD Analysis of the Raw Materials
3.3.2. XRD Analysis of GPS Modified Samples
4. Conclusions
- (1)
- Although the calcium content in CP is high, the reaction activity is insufficient, and the content of silicon and aluminum is unsatisfactory, which seriously affects the polymerization activity of CP and the formation of polymerization products. The addition of GPS can improve the reactivity of calcium in CP and the defect of insufficient silicon and aluminum content in CP.
- (2)
- With the increase in GPS content (0% to 50%), the compressive strength of samples H-3 to H-7 increases significantly, but when the GPS content is higher than 50%, the growth range decreases significantly.
- (3)
- The incorporation of GPS makes up for the deficiency of silicon and aluminum in CP. It improves the polymerization activity, which promotes the transformation of inert aragonite and calcite mineral crystals in CP into high-strength polymerization products. However, when the content of GPS exceeds 50%, silicon and aluminum content in the polymerization reaction environment is too high, while the calcium content is reduced. It affects the formation of polymerization products and cannot further significantly improve the strength of the samples.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Shen, Y.; Feng, Z.; Qi, W.; Ma, Y.; Liu, H. Sedimentary characteristics of coral mud in the South China Sea during the reclamation process. Geo-Mar. Lett. 2019, 39, 417–425. [Google Scholar] [CrossRef]
- Ye, J.; Shan, J.; Zhou, H.; Yan, N. Numerical modelling of the wave interaction with revetment breakwater built on reclaimed coral reef islands in the South China Sea-Experimental verification. Ocean Eng. 2021, 235, 109325. [Google Scholar] [CrossRef]
- Liu, J.; Ou, Z.; Peng, W.; Guo, T.; Deng, W.; Chen, Y. Literature Review of Coral Concrete. Arab. J. Sci. Eng. 2018, 43, 1529–1541. [Google Scholar] [CrossRef]
- Chu, Y.; Wang, A.; Zhu, Y.; Wang, H.; Liu, K.; Ma, R.; Guo, L.; Sun, D. Enhancing the performance of basic magnesium sulfate cement-based coral aggregate concrete through gradient composite design technology. Compos. Part B 2021, 227, 109382. [Google Scholar] [CrossRef]
- Wang, X.; Yu, R.; Shui, Z.; Song, Q.; Zhang, Z. Mix design and characteristics evaluation of an eco-friendly UltraHigh Performance Concrete incorporating recycled coral based materials. J. Clean. Prod. 2017, 165, 70–80. [Google Scholar] [CrossRef]
- Qin, Q.; Meng, Q.; Yang, H.; Wu, W. Study of the anti-abrasion performance and mechanism of coral reef sand concrete. Constr. Build. Mater. 2021, 291, 123263. [Google Scholar] [CrossRef]
- Liu, J.; Ju, B.; Xie, W.; Zhou, T.; Xiao, H.; Dong, S.; Yang, W. Evaluation of the Effects of Surface Treatment Methods on the Properties of Coral Aggregate and Concrete. Materials 2021, 14, 6784. [Google Scholar] [CrossRef]
- Ma, L.; Li, Z.; Liu, J.; Duan, L.; Wu, J. Mechanical properties of coral concrete subjected to uniaxial dynamic compression. Constr. Build. Mater. 2019, 199, 244–255. [Google Scholar] [CrossRef]
- Liu, J.; Ju, B.; Xie, W.; Yu, H.; Xiao, H.; Dong, S.; Yang, W. Design and Evaluation of an Ultrahigh-Strength Coral Aggregate Concrete for Maritime and Reef Engineering. Materials 2021, 14, 5871. [Google Scholar] [CrossRef]
- Wang, A.; Lyu, B.; Zhang, Z.; Liu, K.; Xu, H.; Sun, D. The development of coral concretes and their upgrading technologies:A critical review. Constr. Build. Mater. 2018, 187, 1004–1019. [Google Scholar] [CrossRef]
- Provis, J.L.; Palomo, A.; Shi, C. Advances in understanding alkali-activated materials. Cem. Concr. Res. 2015, 78, 110–125. [Google Scholar] [CrossRef]
- Shi, C.; Fernández-Jiménez, A.; Palomo, A. New cements for the 21st century: The pursuit of an alternative to Portland cement. Cem. Concr. Res. 2011, 41, 750–763. [Google Scholar] [CrossRef]
- Puertas, F.; González-Fonteboa, B.; González-Taboada, I.; Alonso, M.M.; Torres-Carrasco, M.; Rojo, G.; Martínez-Abella, F. Alkali-activated slag concrete: Fresh and hardened behavior. Cem. Concr. Compos. 2018, 85, 22–31. [Google Scholar] [CrossRef]
- Huang, G.; Yang, K.; Chen, L.; Lu, Z.; Sun, Y.; Zhang, X.; Feng, Y.; Ji, Y.; Xu, Z. Use of pretreatment to prevent expansion and foaming in high-performance MSWI bottom ash alkali-activated mortars. Constr. Build. Mater. 2020, 245, 118471. [Google Scholar] [CrossRef]
- Luukkonen, T.; Abdollahnejad, Z.; Yliniemi, J.; Kinnunen, P.; Illikainen, M. One-part alkali-activated materials: A review. Cem. Concr. Res. 2018, 103, 21–34. [Google Scholar] [CrossRef]
- GB/T176-2017; Methods for Chemical Analysis of Cement. AQSIQ: Beijing, China, 2017.
- Shi, Z.; Shi, C.; Zhang, J.; Wan, S.; Zhang, Z.; Ou, Z. Alkali-silica reaction in waterglass-activated slag mortars incorporating fly ash and metakaolin. Cem. Concr. Res. 2018, 108, 10–19. [Google Scholar] [CrossRef]
- Huang, G.; Ji, Y.; Li, J.; Zhang, L.; Liu, X.; Liu, B. Effect of activated silica on polymerization mechanism and strength development of MSWI bottom ash alkali-activated mortars. Constr. Build. Mater. 2019, 201, 90–99. [Google Scholar] [CrossRef]
- Bergold, S.; Goetz-Neunhoeffer, F.; Neubauer, J. Interaction of silicate and aluminate reaction in a synthetic cement system: Implications for the process of alite hydration. Cem. Concr. Res. 2017, 93, 32–44. [Google Scholar] [CrossRef]
- Huang, G.; Yang, K.; Sun, Y.; Lu, Z.; Zhang, X.; Zuo, L.; Feng, Y.; Qian, R.; Qi, Y.; Ji, Y.; et al. Influence of NaOH content on the alkali conversion mechanism in MSWI bottom ash alkali-activated mortars. Constr. Build. Mater. 2020, 248, 118582. [Google Scholar] [CrossRef]
- Maraghechi, H.; Rajabipour, F.; Pantano, C.G.; Burgos, W.D. Effect of calcium on dissolution and precipitation reactions of amorphous silica at high alkalinity. Cem. Concr. Res. 2016, 87, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Ji, Y.; Zhang, L.; Li, J.; Hou, Z. The influence of curing methods on the strength of MSWI bottom ash-based alkali-activated mortars: The role of leaching of OH− and free alkali. Constr. Build. Mater. 2018, 186, 978–985. [Google Scholar] [CrossRef]
- Huang, G.; Ji, Y.; Li, J.; Hou, Z.; Dong, Z. Improving strength of calcinated coal gangue geo-polymer mortars via increasing calcium content. Constr. Build. Mater. 2018, 166, 760–768. [Google Scholar] [CrossRef]
- Angulo-Ramírez, D.E.; de Gutiérrez, R.M.; Puertas, F. Alkali-activated Portland blast-furnace slag cement: Mechanical properties and hydration. Constr. Build. Mater. 2017, 140, 119–128. [Google Scholar] [CrossRef]
- Li, C.; Sun, H.; Li, L. A review: The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements. Cem. Concr. Res. 2010, 40, 1341–1349. [Google Scholar] [CrossRef]
- Huang, G.; Ji, Y.; Hou, J.L.Z.; Jin, C. Use of slaked lime and Portland cement to improve the resistance of MSWI bottom ash-GGBFS geopolymer concrete against carbonation. Constr. Build. Mater. 2018, 166, 290–300. [Google Scholar] [CrossRef]
- Huang, G.; Ji, Y.; Zhang, L.; Li, J.; Hou, Z. Advances in Understanding and Analyzing the Anti-diffusion Behavior in Complete Carbonation Zone of MSWI Bottom Ash-based Alkali-activated Concrete. Constr. Build. Mater. 2018, 186, 1072–1081. [Google Scholar] [CrossRef]
- Huang, G.; Li, Y.; Zhang, Y.; Zhu, J.; Li, D.; Wang, B. Effect of Sodium Hydroxide, Liquid Sodium Silicate, Calcium Hydroxide, and Slag on the Mechanical Properties and Mineral Crystal Structure Evolution of Polymer Materials. Crystals 2021, 11, 1586. [Google Scholar] [CrossRef]
- Huang, G.; Yuan, L.; Ji, Y.; Liu, B.; Xu, Z. Cooperative action and compatibility between Portland cement and MSWI bottom ash alkali-activated double gel system materials. Constr. Build. Mater. 2019, 209, 445–453. [Google Scholar] [CrossRef]
- Huang, G.; Ji, Y.; Zhang, l.; Hou, Z.; Zhang, L.; Wu, S. Influence of calcium content on structure and strength of MSWI bottom ash-based geopolymer. Mag. Concr. Res. 2019, 71, 362–372. [Google Scholar] [CrossRef]
- Swanton, S.W.; Heath, T.G.; Clacher, A. Leaching behaviour of low Ca:Si ratio CaO–SiO2–H2O systems. Cem. Concr. Res. 2016, 88, 82–95. [Google Scholar] [CrossRef]
- Puertas, F.; Palacios, M.; Manzano, H.; Dolado, J.S.; Rico, A.; Rodríguez, J. A model for the C-A-S-H gel formed in alkali-activated slag cements. J. Eur. Ceram. Soc. 2011, 31, 2043–2056. [Google Scholar] [CrossRef]
- L’Hôpital, E.; Lothenbach, B.; Scrivener, K.; Kulik, D. Alkali uptake in calcium alumina silicate hydrate (C-A-S-H). Cem. Concr. Res. 2016, 85, 122–136. [Google Scholar] [CrossRef]
CaO | MgO | Na2O | K2O | Others | Loss | ||||
---|---|---|---|---|---|---|---|---|---|
CP | 1.7 | 0.3 | 0.2 | 50.7 | 0.8 | - | - | 2.7 | 43.3 |
GSP | 31.4 | 18.7 | 0.6 | 34.7 | 9.3 | 1.3 | 0.8 | 2.3 | 0.73 |
CP | GSP | Water | Liquid Sodium Silicate | NaOH | Sand | L/S | |
---|---|---|---|---|---|---|---|
H-1 | 450 | / | 147 | 120 | 20 | 1350 | 0.5 |
H-2 | / | 450 | 147 | 120 | 20 | 1350 | 0.5 |
H-3 | 405 | 45 | 147 | 120 | 20 | 1350 | 0.5 |
H-4 | 360 | 90 | 147 | 120 | 20 | 1350 | 0.5 |
H-5 | 315 | 135 | 147 | 120 | 20 | 1350 | 0.5 |
H-6 | 270 | 180 | 147 | 120 | 20 | 1350 | 0.5 |
H-7 | 225 | 225 | 147 | 120 | 20 | 1350 | 0.5 |
H-8 | 180 | 270 | 147 | 120 | 20 | 1350 | 0.5 |
H-9 | 135 | 315 | 147 | 120 | 20 | 1350 | 0.5 |
H-10 | 90 | 360 | 147 | 120 | 20 | 1350 | 0.5 |
SiO2 | CaO | Al2O3 | ||
---|---|---|---|---|
I H-1/H-2 CP/GSP | 10 g(5.67 g)/10 g | 2.9/31.4 | 89.5/34.7 | 0.5/18.7 |
II Residue | 3.5 g (61.7%)/0.8 g (8%) | 2.5/55.3 | 95.6/23.4 | 0.2/6.1 |
III Active components | 2.17 g (38.3%)/9.2 g (92%) | 2.0/27.0 | 56.0/32.8 | 0.4/18.2 |
VI Dissolution rate | 69/86.0 | 62.6/94.5 | 99/97.3 | |
H-3 90%CP + 10%GSP | Active components /Dissolution rate | 4.5/70.7 | 53.7/65.8 | 2.2/98.8 |
H-4 80%CP + 20%GSP | 7.0/72.4 | 51.4/69.0 | 4.0/98.7 | |
H-5 70%CP + 30%GSP | 9.5/74.1 | 49.0/72.2 | 5.7/98.5 | |
H-6 60%CP + 40%GSP | 12.0/75.8 | 46.7/75.4 | 7.5/98.3 | |
H-7 50%CP + 50%GSP | 14.5/77.5 | 44.4/78.6 | 9.3/98.2 | |
H-8 40%CP + 60%GSP | 17.0/79.2 | 42.1/81.7 | 11.1/98.0 | |
H-9 30%CP + 70%GSP | 19.5/80.9 | 39.8/85.0 | 12.9/97.8 | |
H-10 20%CP + 80%GSP | 22/82.6 | 37.4/88.1 | 14.6/97.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, G.; Zhu, J.; Zhang, Y.; Li, D.; Wang, B.; Li, M.; Jin, L.; Gong, J. The Effect of Slag on the Mechanical Properties of Coralline-Activated Materials and the Formation and Transformation of Mineral Crystals. Crystals 2022, 12, 470. https://doi.org/10.3390/cryst12040470
Huang G, Zhu J, Zhang Y, Li D, Wang B, Li M, Jin L, Gong J. The Effect of Slag on the Mechanical Properties of Coralline-Activated Materials and the Formation and Transformation of Mineral Crystals. Crystals. 2022; 12(4):470. https://doi.org/10.3390/cryst12040470
Chicago/Turabian StyleHuang, Guodong, Jielei Zhu, Yuting Zhang, Dawei Li, Bo Wang, Mengrong Li, Lina Jin, and Jinghai Gong. 2022. "The Effect of Slag on the Mechanical Properties of Coralline-Activated Materials and the Formation and Transformation of Mineral Crystals" Crystals 12, no. 4: 470. https://doi.org/10.3390/cryst12040470
APA StyleHuang, G., Zhu, J., Zhang, Y., Li, D., Wang, B., Li, M., Jin, L., & Gong, J. (2022). The Effect of Slag on the Mechanical Properties of Coralline-Activated Materials and the Formation and Transformation of Mineral Crystals. Crystals, 12(4), 470. https://doi.org/10.3390/cryst12040470