Mode-Locked YDFL Using Topological Insulator Bismuth Selenide Nanosheets as the Saturable Absorber
Abstract
:1. Introduction
2. Preparation of TI Bi2Se3
3. Experimental Setup
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mirjanic, V.; Sreckovic, M.; Mirjanic, D.; Bugarinovic, A.; Druzijanic, D.; Mitic, V.V. Chosen applications and approaches to modeling lasers in dentistry. Mod. Phys. Lett. B 2021, 35, 2150329. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Liu, Y.F.; Jia, D.G.; Yu, T.Y.; Huang, Y.D.; Zhang, Z.Y.; Wang, R.X. Electrically controlled tunable optical parametric oscillator (3.0–6.7 µm) based on BaGa4Se7 crystal pumped by a Q-switch Nd: YAG laser. In AOPC 2020: Advanced Laser Technology and Application; SPIE: Bellingham, WA, USA, 2020; Volume 11562. [Google Scholar]
- Tan, S.J.; Harun, S.W.; Arof, H.; Ahmad, H. Switchable Q-switched and mode-locked erbium-doped fiber laser operating in the L-band region. Chin. Opt. Lett. 2013, 11, 073201. [Google Scholar]
- Tan, S.J.; Tiu, Z.C.; Harun, S.W.; Ahmad, H. Sideband-controllable soliton pulse with bismuth-based erbium-doped fiber. Chin. Opt. Lett. 2015, 13, 111406. [Google Scholar] [CrossRef] [Green Version]
- Adnan, N.; Bidin, N.; Taib, N.; Haris, H.; Fakaruddin, M.; Hashim, A.; Krishnan, G.; Harun, S. Passively Q-switched flashlamp pumped Nd: YAG laser using liquid graphene oxide as saturable absorber. Opt. Laser Technol. 2016, 80, 28–32. [Google Scholar] [CrossRef]
- Taib, N.A.M.; Bidin, N.; Haris, H.; Adnan, N.N.; Ahmad, M.F.S.; Harun, S.W. Multi-walled carbon nanotubes saturable absorber in Q-switching flashlamp pumped Nd: YAG laser. Opt. Laser Technol. 2016, 79, 193–197. [Google Scholar] [CrossRef]
- Markom, A.M.; Latiff, A.A.; Muhammad, A.R.; Ahmad, M.T.; Yusoff, Z.M.; Paul, M.C.; Dhar, A.; Das, S.; Harun, S.W. Q-switched Zirconia-Yttria-Aluminium-Erbium-doped pulsed fiber laser with a pencil-core of graphene as saturable absorber. Optoelectron. Adv. Mater.-Rapid Commun. 2020, 14, 1–5. [Google Scholar]
- Dai, L.L.; Huang, Z.N.; Huang, Q.Q.; Zhao, C.; Rozhin, A.; Sergeyev, S.; Al Araimi, M.; Mou, C.B. Carbon nanotube mode-locked fiber lasers: Recent progress and perspectives. Nanophotonics 2021, 10, 749–775. [Google Scholar] [CrossRef]
- Haris, H.; Anyi, C.; Ali, N.; Arof, H.; Ahmad, F.; Nor, R.; Zulkepely, N.; Harun, S. Passively Q-switched erbium-doped fiber laser at L-band region by employing multi-walled carbon nanotubes as saturable absorber. Optoelectron. Adv. Mater.-Rapid Commun. 2014, 8, 1025–1028. [Google Scholar]
- Guo, Y.X.; Li, X.H.; Guo, P.L.; Zheng, H.R. Supercontinuum generation in an Er-doped figure-eight passively mode-locked fiber laser. Opt Express 2018, 26, 9893–9900. [Google Scholar] [CrossRef]
- Deng, T.; Zhang, Z.H.; Liu, Y.X.; Wang, Y.X.; Su, F.; Li, S.S.; Zhang, Y.; Li, H.; Chen, H.J.; Zhao, Z.R.; et al. Three-Dimensional Graphene Field-Effect Transistors as High-Performance Photodetectors. Nano Lett. 2019, 19, 1494–1503. [Google Scholar] [CrossRef] [Green Version]
- Haris, H.; Arof, H.; Muhammad, A.R.; Anyi, C.L.; Tan, S.J.; Kasim, N.; Harun, S.W. Passively Q-switched and mode-locked Erbium-doped fiber laser with topological insulator Bismuth Selenide (Bi2Se3) as saturable absorber at C-band region. Opt. Fiber Technol. 2019, 48, 117–122. [Google Scholar] [CrossRef]
- Jin, L.; Ma, X.; Zhang, H.; Zhang, H.; Chen, H.; Xu, Y. 3 GHz passively harmonic mode-locked Er-doped fiber laser by evanescent field-based nano-sheets topological insulator. Opt. Express 2018, 26, 31244–31252. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Pang, L.; Han, H.; Bi, K.; Lei, M.; Wei, Z. Tungsten disulphide for ultrashort pulse generation in all-fiber lasers. Nanoscale 2017, 9, 5806–5811. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Liu, M.; OuYang, Y.; Hou, H.; Ma, G.; Lei, M.; Wei, Z. Tungsten diselenide for mode-locked erbium-doped fiber lasers with short pulse duration. Nanotechnology 2018, 29, 174002. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wu, H.; Liu, X.; Wang, Y.; Lei, M.; Liu, W.; Guo, W.; Wei, Z. Optical properties and applications of SnS2 SAs with different thickness. Opto-Electron. Adv. 2021, 4, 200029-1. [Google Scholar] [CrossRef]
- Li, L.; Pang, L.; Wang, R.; Zhang, X.; Hui, Z.; Han, D.; Zhao, F.; Liu, W. Ternary Transition Metal Dichalcogenides for High Power Vector Dissipative Soliton Ultrafast Fiber Laser. Laser Photonics Rev. 2021, 16, 2100255. [Google Scholar] [CrossRef]
- Hisyam, M.B.; Rusdi, M.F.M.; Latiff, A.A.; Harun, S.W. Generation of Mode-Locked Ytterbium Doped Fiber Ring Laser Using Few-Layer Black Phosphorus as a Saturable Absorber. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 39–43. [Google Scholar] [CrossRef]
- Markom, A.M.; Tan, S.J.; Muhammad, A.R.; Paul, M.C.; Dhar, A.; Das, S.; Latiff, A.A.; Harun, S.W. Dark pulse mode-locked fibre laser with zirconia-based erbium-doped fibre (Zr-EDF) and Black phosphorus saturable absorber. Optik 2020, 223, 165635. [Google Scholar] [CrossRef]
- Wang, C.; Peng, Q.Q.; Fan, X.W.; Liang, W.Y.; Zhang, F.; Liu, J.; Zhang, H. MXene Ti3C2Tx saturable absorber for pulsed laser at 1.3 mµ. Chin. Phys. B 2018, 27, 094214. [Google Scholar] [CrossRef]
- Wang, L.; Li, X.H.; Wang, C.; Luo, W.F.; Feng, T.C.; Zhang, Y.; Zhang, H. Few-Layer Mxene Ti3C2Tx (T=F, O, Or OH) for Robust Pulse Generation in a Compact Er-Doped Fiber Laser. Chemnanomat 2019, 5, 1233–1238. [Google Scholar] [CrossRef]
- Muhammad, A.R.; Jafry, A.A.A.; Markom, A.M.; Rosol, A.H.A.; Harun, S.W.; Yupapin, P. Q-Switched YDFL generation by a MAX phase saturable absorber. Appl. Opt. 2020, 59, 5408–5414. [Google Scholar] [CrossRef]
- Jafry, A.A.A.; Kasim, N.; Rusdi, M.F.M.; Rosol, A.H.A.; Yusoff, R.A.M.; Muhammad, A.R.; Nizamani, B.; Harun, S.W. MAX phase based saturable absorber for mode-locked erbium-doped fiber laser. Opt. Laser Technol. 2020, 127, 106186. [Google Scholar] [CrossRef]
- Shaukat, R.A.; Khan, M.U.; Saqib, Q.M.; Chougale, M.Y.; Kim, J.; Bae, J. All range highly linear and sensitive humidity sensor based on 2D material TiSi2 for real-time monitoring. Sens. Actuators B-Chem. 2021, 345, 130371. [Google Scholar] [CrossRef]
- Ma, Z.Z.; Tahersima, M.H.; Khan, S.; Sorger, V.J. Two-Dimensional Material-Based Mode Confinement Engineering in Electro-Optic Modulators. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 81–88. [Google Scholar] [CrossRef]
- Qiao, H.; Huang, Z.Y.; Ren, X.H.; Liu, S.H.; Zhang, Y.P.; Qi, X.; Zhang, H. Self-Powered Photodetectors Based on 2D Materials. Adv. Opt. Mater. 2020, 8, 1900765. [Google Scholar] [CrossRef]
- Xie, X.; Sarkar, D.; Liu, W.; Kang, J.; Marinov, O.; Deen, M.J.; Banerjee, K. Low-frequency noise in bilayer MoS2 transistor. ACS Nano 2014, 8, 5633–5640. [Google Scholar] [CrossRef]
- Tiu, Z.C.; Haris, H.; Ahmad, H.; Tan, S.J. All fiber temperature sensor based on light polarization measurement utilizing graphene coated tapered fiber. Microw. Opt. Technol. Lett. 2021, 63, 1314–1318. [Google Scholar] [CrossRef]
- Song, Y.F.; Chen, Y.X.; Jiang, X.T.; Ge, Y.Q.; Wang, Y.Z.; You, K.X.; Wang, K.; Zheng, J.L.; Ji, J.H.; Zhang, Y.P.; et al. Nonlinear Few-Layer MXene-Assisted All-Optical Wavelength Conversion at Telecommunication Band. Adv. Opt. Mater. 2019, 7, 1801777. [Google Scholar] [CrossRef]
- Liu, W.; Shi, T.; Liu, M.; Wang, Q.; Liu, X.; Zhou, Q.; Lei, M.; Lu, P.; Yu, L.; Wei, Z. Nonlinear optical property and application of yttrium oxide in erbium-doped fiber lasers. Opt. Express 2021, 29, 29402–29411. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, J.; Gao, Y.; Li, X.; Lu, H.; Wang, Y.; Feng, J.-j.; Lu, J.; Ma, K.; Chen, X. Porous nickel oxide micron polyhedral particles for high-performance ultrafast photonics. Opt. Laser Technol. 2022, 146, 107546. [Google Scholar] [CrossRef]
- Wang, Y.R.; Sung, W.H.; Su, X.C.; Zhao, Y.; Zhang, B.T.; Wu, C.L.; He, G.B.; Lin, Y.Y.; Liu, H.; He, J.L.; et al. Ultralow Saturation Intensity Topological Insulator Saturable Absorber for Gigahertz Mode-Locked Solid-State Lasers. IEEE Photonics J. 2018, 10, 1–10. [Google Scholar] [CrossRef]
- Yang, J.N.; Ma, Y.J.; Tian, K.; Li, Y.H.; Dou, X.D.; Han, W.J.; Xu, H.H.; Liu, J.H. High-power passive Q-switching performance of a Yb:YCa4O(BO3)3 laser with a few-layer Bi2Te3 topological insulator as a saturable absorber. Opt. Mater. Express 2018, 8, 3146–3154. [Google Scholar] [CrossRef]
- Jafry, A.A.A.; Kasim, N.; Nizamani, B.; Muhammad, A.R.; Harun, S.W.; Yupapin, P.J.O. MAX phase Ti3AlC2 embedded in PVA and deposited onto D-shaped fiber as a passive Q-switcher for erbium-doped fiber laser. Optik 2020, 224, 165682. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, C.J.; Huang, H.H.; Chen, S.Q.; Tang, P.H.; Wang, Z.T.; Lu, S.B.; Zhang, H.; Wen, S.C.; Tang, D.Y. Self-Assembled Topological Insulator: Bi2Se3 Membrane as a Passive Q-Switcher in an Erbium-Doped Fiber Laser. J. Lightw. Technol. 2013, 31, 2857–2863. [Google Scholar] [CrossRef]
- Zhang, G.H.; Qin, H.J.; Teng, J.; Guo, J.D.; Guo, Q.L.; Dai, X.; Fang, Z.; Wu, K.H. Quintuple-layer epitaxy of thin films of topological insulator Bi2Se3. Appl. Phys. Lett. 2009, 95, 053114. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Liu, M.; Liu, X.; Wang, X.; Deng, H.-X.; Lei, M.; Wei, Z.; Wei, Z. Recent Advances of 2D Materials in Nonlinear Photonics and Fiber Lasers. Adv. Opt. Mater. 2020, 8, 1901631. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, H.; Shi, H.; Ren, J.; Yang, Q.-H.; Wang, P. Dissipative soliton resonance and reverse saturable absorption in graphene oxide mode-locked all-normal-dispersion Yb-doped fiber laser. Opt. Express 2015, 23, 7000–7006. [Google Scholar] [CrossRef]
- Huang, S.; Wang, Y.; Peiguang, Y.; Zhang, G.; Zhao, J.; Li, H.; Lin, R.; Cao, G.; Duan, J.a. Observation of multipulse bunches in a graphene oxide passively mode-locked ytterbium-doped fiber laser with all-normal dispersion. Appl. Phys. B 2014, 116, 939–946. [Google Scholar] [CrossRef]
- Zhao, L.M.; Tang, D.Y.; Zhang, H.; Wu, X.; Bao, Q.; Loh, K.P. Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene. Opt. Lett. 2010, 35, 3622–3624. [Google Scholar] [CrossRef]
- Zhao, N.; Liu, M.; Liu, H.; Zheng, X.-W.; Ning, Q.-Y.; Luo, A.-P.; Luo, Z.-C.; Xu, W.-C. Dual-wavelength rectangular pulse Yb-doped fiber laser using a microfiber-based graphene saturable absorber. Opt. Express 2014, 22, 10906–10913. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Yan, P.; Cao, G.; Zhao, J.; Zhang, G.; Huang, S.; Lin, R. Passively harmonic mode locking in ytterbium-doped fiber laser with graphene oxide saturable absorber. Opt. Eng. 2013, 52, 126102. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.-R.; Tsai, C.-Y.; Cheng, H.-M.; Lin, K.-H.; Hsieh, W.-F. Passive mode locking of ytterbium- and erbium-doped all-fiber lasers using graphene oxide saturable absorbers. Opt. Express 2014, 22, 12880–12889. [Google Scholar] [CrossRef] [PubMed]
- Lee, H. Monolayer MoS2-based high energy rectangular pulse fiber laser. Optik 2018, 174, 530–536. [Google Scholar] [CrossRef]
- Cheng, P.K.; Liu, S.; Ahmed, S.; Qu, J.; Qiao, J.; Wen, Q.; Tsang, Y.H. Ultrafast Yb-Doped Fiber Laser Using Few Layers of PdS2 Saturable Absorber. Nanomaterials 2020, 10, 2441. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, P.; Zhu, M.; Zhang, W.; Wang, G.; Fu, S. Palladium selenide as a broadband saturable absorber for ultra-fast photonics. Nanophotonics 2020, 9, 2557–2567. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Wang, Q.; Zhang, Y.; Li, L. Mode-locked ytterbium-doped all-fiber lasers based on few-layer black phosphorus saturable absorbers. Opt. Commun. 2017, 394, 157–160. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, W.; Shi, X.; Wang, J.; Ding, X.; Zhang, K.; Peng, J.; Wu, J.; Zhou, P. Black phosphorus-enabled harmonic mode locking of dark pulses in a Yb-doped fiber laser. Laser Phys. Lett. 2019, 16, 085102. [Google Scholar] [CrossRef]
- Dou, Z.; Song, Y.; Tian, J.; Liu, J.; Yu, Z.; Fang, X. Mode-locked ytterbium-doped fiber laser based on topological insulator: Bi2Se3. Opt. Express 2014, 22, 24055–24061. [Google Scholar] [CrossRef]
- Chi, C.; Lee, J.; Koo, J.; Han Lee, J. All-normal-dispersion dissipative-soliton fiber laser at 1.06 µm using a bulk-structured Bi2Te3topological insulator-deposited side-polished fiber. Laser Phys. 2014, 24, 105106. [Google Scholar] [CrossRef]
- Li, L.; Yan, P.-G.; Wang, Y.-G.; Duan, L.-N.; Sun, H.; Si, J.-H. Yb-doped passively mode-locked fiber laser with Bi2Te3-deposited. Chin. Phys. B 2015, 24, 124204. [Google Scholar] [CrossRef]
- Kowalczyk, M.; Boguslawski, J.; Stachowiak, D.; Tarka, J.; Zybala, R.; Mars, K.; Mikula, A.; Sobon, G.; Sotor, J.; Abramski, K. All-Normal Dispersion Yb-Doped Fiber Laser Mode-Locked by Sb2Te3 Topological Insulator; SPIE: Bellingham, WA, USA, 2016; Volume 9893. [Google Scholar]
- Li, L.; Wang, Y.; Wang, X.; Lin, T.; Sun, H. High energy mode-locked Yb-doped fiber laser with Bi2Te3 deposited on tapered-fiber. Optik 2017, 142, 470–474. [Google Scholar] [CrossRef]
- Han, X.; Zhang, H.; Zhang, C.; Li, C.; Guo, Q.; Gao, J.; Jiang, S.; Man, B. Large-energy mode-locked ytterbium-doped linear-cavity fiber laser based on chemical vapor deposition-Bi2Se3 as a saturable absorber. Appl. Opt. 2019, 58, 2695–2701. [Google Scholar] [CrossRef] [PubMed]
SA Material | Integration Method | Operating Wavelength | 3 dB Bandwidth | Threshold (mW) | Pulse Width | Repetition Rate | Ref. |
---|---|---|---|---|---|---|---|
Graphene | Thin film | 1964.9 nm | 0.19 nm | 567 mW | 0.9–6.8 ns | 927 kHz | [38] |
GO | Thin film | 1064.1 nm | 0.477 nm | 137 mW | 2.3 ns | 1.072 MHz | [39] |
Graphene | Thin film | 1069.5 nm | 1.29 nm | 45 mW | 580 ps | 0.9 MHz | [40] |
Graphene | Tapered fiber | 1061.8 nm, 1068.8 nm | 4.5 nm, 2.16 nm | 263 mW | 2.64 ns | 1.78 MHz | [41] |
GO | Thin film | 1077.68 nm | 1.22 nm | 106.5 mW | 2.0 ns | 1.583 MHz | [42] |
GO | Thin film | 1059.7 nm | 1.93 nm | 45 mW | 189 ps | 10.05 MHz | [43] |
TMD MoS2 | Thin film | 1029.3 nm | 2.3 nm | 55 mW | 336.5 ps | 2.025 MHz | [44] |
TMD PDS2 | Side-polished fiber | 1033 nm | 3.7 nm | 160 mW | 375 ps | 24.4 MHz | [45] |
TMD PdSe2 | Thin film | 1067.37 nm | 5.22 nm | 135 mW | 767.7 ps | 3.77 MHz | [46] |
BP | Thin film | 1085.58 nm | 0.23 nm | 1322 mW | 26 ns | 13.5 MHz | [47] |
BP | Thin film | 1030.6 nm | 0.11 nm | 200 mW | 400 ps | 46.3 MHz | [47] |
BP | Thin film | 1067.1 nm | 0.11 nm | 258.6 mW | 77.2 ns | 0.39 MHz | [48] |
TI Bi2Se3 | Thin film | 1031.7 nm | 2.5 nm | 153 mW | 46 ps | 44.6 MHz | [49] |
TI Bi2Te3 | SPF | 1057.82 nm | 3.69 nm | 200 mW | 230 ps | 1.44 Mhz | [50] |
Ti Bi2Te3 | Tapered fiber | 1052.5 nm | 1.245 nm | 230 mW | 317 ps | 19.8 MHz | [51] |
Ti Sb2Te3 | SPF | 1039.4 nm | 4.25 nm | 320 mW | 380 ps | 17.07 MHz | [52] |
Ti Bi2Te3 | Tapered fiber | 1063.4 nm | 2.24 nm | 220 mW | 5.47 ns | 6.2 MHz | [53] |
TI Bi2Se3 | Thin film | 1065.08 nm | 0.025 nm | 105 mW | 398 ns | 527 kHz | [54] |
TI Bi2Se3 | Optical deposition | 1051.7 | 1.04 nm | 110.5 mW | 6.2 ns | 8.3 MHz | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haris, H.; Batumalay, M.; Tan, S.J.; Markom, A.M.; Muhammad, A.R.; Harun, S.W.; Megat Hasnan, M.M.I.; Saad, I. Mode-Locked YDFL Using Topological Insulator Bismuth Selenide Nanosheets as the Saturable Absorber. Crystals 2022, 12, 489. https://doi.org/10.3390/cryst12040489
Haris H, Batumalay M, Tan SJ, Markom AM, Muhammad AR, Harun SW, Megat Hasnan MMI, Saad I. Mode-Locked YDFL Using Topological Insulator Bismuth Selenide Nanosheets as the Saturable Absorber. Crystals. 2022; 12(4):489. https://doi.org/10.3390/cryst12040489
Chicago/Turabian StyleHaris, Hazlihan, Malathy Batumalay, Sin Jin Tan, Arni Munira Markom, Ahmad Razif Muhammad, Sulaiman Wadi Harun, Megat Muhammad Ikhsan Megat Hasnan, and Ismail Saad. 2022. "Mode-Locked YDFL Using Topological Insulator Bismuth Selenide Nanosheets as the Saturable Absorber" Crystals 12, no. 4: 489. https://doi.org/10.3390/cryst12040489
APA StyleHaris, H., Batumalay, M., Tan, S. J., Markom, A. M., Muhammad, A. R., Harun, S. W., Megat Hasnan, M. M. I., & Saad, I. (2022). Mode-Locked YDFL Using Topological Insulator Bismuth Selenide Nanosheets as the Saturable Absorber. Crystals, 12(4), 489. https://doi.org/10.3390/cryst12040489