Layered Double Hydroxides (LDHs) as New Consolidants for Cultural Heritage Masonry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Consolidant Preparation
2.2. Specimens Preparation
2.3. Application of the LDH Derivatives
2.4. Methods
- (a)
- by applying the dispersion on the specimen samples by brushing, 3 times on every side.
- (b)
- by incorporating 5% (w/w) of every consolidant into specimen samples.
3. Results and Discussion
3.1. Crystal Structure
3.2. Kinetic Stability of LDH Dispersions
3.3. Consolidant Testing
3.3.1. Brushed Samples
3.3.2. Samples with Incorporated 5% LDH
3.4. Microscopy Investigations/ImageJ Processing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baglioni, P.; Giorgi, R. Soft and hard nanomaterials for restoration and conservation of cultural heritage. Soft Matter 2006, 2, 293–303. [Google Scholar] [CrossRef]
- Salvadori, B.; Dei, L. Synthesis of Ca(OH)2 nanoparticles from diols. Langmuir 2001, 17, 2371–2374. [Google Scholar] [CrossRef]
- Daniele, V.; Taglieri, G.; Quaresima, R. The nanolimes in cultural heritage conservation: Characterization and analysis of the carbonation process. J. Cult. Herit. 2008, 9, 294–301. [Google Scholar] [CrossRef]
- Baglioni, P.; Chelazzi, D.; Giorgi, R. Nanotechnologies in the Conservation of Cultural Heritage. In A Compedium of Materials and Techniques, 1st ed.; Springer: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Ciofini, D.; Mencaglia, A.A.; Siano, S. A photoacoustic pulse-echo probe for monitoring surface stone mechanical properties: Validation tests in consolidation of Carrara marble. Constr. Build. Mater. 2018, 187, 610–619. [Google Scholar] [CrossRef]
- Becerra, J.; Zaderenko, A.P.; Ortiz, R.; Karapanagiotis, I.; Ortiz, P. Comparison of the performance of a novel nanolime doped with ZnO quantum dots with common consolidants for historical carbonate stone buildings. Appl. Clay Sci. 2020, 195, 105732. [Google Scholar] [CrossRef]
- Vasanelli, E.; Calia, A.; Masieri, M.; Baldi, G. Stone consolidation with SiO2 nanoparticles: Effects on a high porosity limestone. Constr. Build. Mater. 2019, 219, 154–163. [Google Scholar] [CrossRef]
- Da Fonseca, B.S.; Ferreira Pinto, A.P.; Piçarra, S.; Montemor, M.F. Artificial aging route for assessing the potential efficacy of consolidation treatments applied to porous carbonate stones. Mater. Des. 2017, 120, 10–21. [Google Scholar] [CrossRef]
- Barriuso, B.C. Conservation of calcareous stone monuments: Screening different diammonium phosphate based formulations for countering phototrophic colonization. J. Cult. Herit. 2017, 27, 97–106. [Google Scholar] [CrossRef]
- Raneri, S.; Barone, G.; Mazzoleni, P.; Alfieri, I.; Bergamonti, L.; De Kock, T.; Cnudde, V.; Lottici, P.P.; Lorenzi, A.; Predieri, A.G.; et al. Multi-scale laboratory routine in the efficacy assessment of conservative products for natural stones. MethodsX 2018, 5, 1095–1101. [Google Scholar] [CrossRef]
- Badreddine, D.; Beck, K.; Brunetaud, X.; Chaaba, A.; Al-Mukhtar, M. Nanolime consolidation of the main building stone of the archaeological site of Volubilis (Morocco). J. Cult. Herit. 2020, 43, 98–107. [Google Scholar] [CrossRef]
- Becerra, J.; Ortiz, P.; Martín, J.M.; Zaderenko, A.P. Nanolimes doped with quantum dots for stone consolidation assessment. Constr. Build. Mater. 2019, 199, 581–593. [Google Scholar] [CrossRef]
- Cavani, F.; Trifirò, F.; Vaccari, A. Hydrotalcite type anionic clays, preparation, properties and applications. Catal. Today 1991, 11, 173–301. [Google Scholar] [CrossRef]
- Evans, D.G.; Slade, R.C.T. Structural aspects of layered double hydroxides. In Layered Double Hydroxides; Duan, X., Evans, D.G., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–87. [Google Scholar]
- Forano, C.; Hibino, T.; Leroux, F.; Taviot-Guého, C. Chapter 13.1 layered double hydroxides. Dev. Clay Sci. 2006, 1, 1021–1095. [Google Scholar]
- Guo, Q.; Reardon, E.J. Calcined dolomite: Alternative to lime for minimizing undesirable element leachability from fly ash. Ind. Eng. Chem. Res. 2012, 51, 9106–9116. [Google Scholar] [CrossRef]
- Miyata, S.; Okada, A. Synthesis of hydrotalcite-like compounds and their physico-chemical properties—The systems Mg2+-Al3+-SO42- and Mg2+-Al3+-CrO42. Clays Clay Miner. 1977, 25, 14–18. [Google Scholar] [CrossRef]
- Miyata, S. Physico-chemical properties of synthetic hydrotalcites in relation to composition. Clays Clay Miner. 1980, 28, 50–56. [Google Scholar] [CrossRef]
- Miyata, S. Anion-exchange properties of hydrotalcite-like compounds. Clays Clay Miner. 1983, 31, 305–311. [Google Scholar] [CrossRef]
- Reichle, W.T. Synthesis of anionic clay minerals (mixed metal hydroxides, hydrotalcite). Solid State Ion. 1986, 22, 135–141. [Google Scholar] [CrossRef]
- Artioli, G.; Secco, M.; Addis, A.; Bellotto, M. 5 Role of hydrotalcite-type layered double hydroxides in delayed pozzolanic reactions and their bearing on mortar dating. In Cementitious Materials: Composition, Properties, Application; Walter de Gruyter: Berlin, Germany, 2017. [Google Scholar]
- Siedel, H.; Michalski, S.; Ullrich, B. Characterisation of dolomitic lime mortars from the Benedictine monastery in Riesa, Saxony (Germany). In Historic Mortars; Springer: Dordrecht, The Netherlands, 2012; pp. 115–124. [Google Scholar]
- Brandon, C.J.; Hohlfelder, R.L.; Jackson, M.D.; Oleson, J.P. Building for Eternity: The History and Technology of Roman Concrete Engineering in the Sea; Oxbow Books: Oxford, UK; Philadelphia, PA, USA, 2014. [Google Scholar]
- Massazza, F. Pozzolana and pozzolanic cements. In Lea’s Chemistry of Cement and Concrete, 4th ed.; Hewlett, P., Ed.; Elsevier-Butterworth-Heinemann: Oxford, UK, 1998; pp. 471–635. [Google Scholar]
- Zümreoglu-Karan, B.; Ay, A. Layered double hydroxides—Multifunctional nanomaterials. Chem. Pap. 2012, 66, 1–10. [Google Scholar] [CrossRef]
- Moaty, S.A.A.; Farghali, A.A.; Khaled, R. Preparation, characterization and antimicrobial applications of Zn-Fe LDH against MRSA’. Mater. Sci. Eng. C 2016, 68, 184–193. [Google Scholar] [CrossRef]
- Wang, X.-R.; Cheng, H.-M.; Gao, X.-W.; Zhou, W.; Li, S.-J.; Cao, X.-L.; Yan, D. Intercalation assembly of kojic acid into Zn-Ti layered double hydroxide with antibacterial and whitening performances. Chin. Chem. Lett. 2019, 30, 919–923. [Google Scholar] [CrossRef]
- Lobo-Sánchez, M.; Nájera-Meléndez, G.; Luna, G.; Segura-Pérez, V.; Rivera, J.A.; Fetter, G. ZnAl layered double hydroxides impregnated with eucalyptus oil as efficient hybrid materials against multi-resistant bacteria. Appl. Clay Sci. 2018, 153, 61–69. [Google Scholar] [CrossRef]
- Qiao, Y.; Li, Q.; Chi, H.; Li, M.; Lv, Y.; Feng, S.; Zhu, R.; Li, K. Methyl blue adsorption properties and bacteriostatic activities of Mg-Al layer oxides via a facile preparation method. Appl. Clay Sci. 2018, 163, 119–128. [Google Scholar] [CrossRef]
- Bugatti, V.; Esposito, L.; Franzetti, L.; Tammaro, L.; Vittoria, V. Influence of the powder dimensions on the antimicrobial properties of modified layered double hydroxide. Appl. Clay Sci. 2013, 75–76, 46–51. [Google Scholar] [CrossRef]
- Qu, Z.Y.; Yu, Q.L.; Brouwers, H.J.H. Relationship between the particle size and dosage of LDHs and concrete resistance against chloride ingress. Cem. Concr. Res. 2018, 105, 81–90. [Google Scholar] [CrossRef]
- Iftekhar, S.; Küçük, M.E.; Srivastava, V.; Repo, E.; Sillanpää, M. Application of zinc-aluminium layered double hydroxides for adsorptive removal of phosphate and sulfate: Equilibrium, kinetic and thermodynamic. Chemosphere 2018, 209, 470–479. [Google Scholar] [CrossRef]
- Varga, G.; Kónya, Z.; Kukovecz, Á.; Sipos, V.; Pálinkó, I. Co(II)-amino acid-CaAl-layered double hydroxide composites—Construction and characterization. J. Mol. Struct. 1179, 2019, 263–268. [Google Scholar] [CrossRef]
- Liu, T.; Chen, Y.; Yu, Q.; Fan, J.; Brouwers, V. Effect of MgO, Mg-Al-NO3 LDH and calcined LDH-CO3 on chloride resistance of alkali activated fly ash and slag blends. Constr. Build. Mater. 2020, 250, 118865. [Google Scholar] [CrossRef]
- Shui, Z.H.; Yu, R.; Chen, Y.X.; Duan, P.; Ma, J.T.; Wang, X.P. Improvement of concrete carbonation resistance based on a structure modified Layered Double Hydroxides (LDHs): Experiments and mechanism analysis. Constr. Build. Mater. 2018, 176, 228–240. [Google Scholar] [CrossRef]
- Guo, L.; Wu, Y.; Duan, P.; Zhang, Z. Improving sulfate attack resistance of concrete by using calcined Mg-Al-CO3 LDHs: Adsorption behavior and mechanism. Constr. Build. Mater. 2020, 232, 117256. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, R.; Wang, X.; Chen, J.; Shui, Z. Evaluation and optimization of Ultra-High Performance Concrete (UHPC) subjected to harsh ocean environment: Towards an application of Layered Double Hydroxides (LDHs). Constr. Build. Mater. 2018, 177, 51–62. [Google Scholar] [CrossRef]
- Wang, J.; Huang, B.; Mao, Z.; Wang, Y. Study on Adsorption Properties of Calcined Mg-Al Hydrotalcite for Sulfate Ion and Chloride Ion in Cement Paste. Materials 2021, 14, 994. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Chen, Z.; Zhang, B.; Yu, J.; Zhang, F.; Evans, D.G. Facile preparation of pure CaAl-layered double hydroxides and their application as a hardening accelerator in concrete. Chem. Eng. J. 2009, 155, 881–885. [Google Scholar] [CrossRef]
- Messali, F.; Metelli, G.; Plizzari, G. Experimental Results on the Retrofitting of Hollow Brick Masonry Walls with Reinforced High-Performance Mortar Coatings. Constr. Build. Mater. 2017, 141, 619–630. [Google Scholar] [CrossRef]
- Gattesco, N.; Macorini, L. In-Plane Stiffening Techniques with Nail Plates or CFRP Strips for Timber Floors in Historical Masonry Buildings. Constr. Build. Mater. 2014, 58, 64–76. [Google Scholar] [CrossRef]
- BS EN 459-1:2010; Building Lime-Part 1: Definition, Specifications and Conformity Criteria; BSI: London, UK, 2010.
- Faria, P.; Henriques, F.; Rato, V. Comparative Evaluation of Lime Mortars for Architectural Conservation. J. Cult. Herit. 2008, 9, 338–346. [Google Scholar] [CrossRef]
- Lawrence, R.M.H. A Study of Carbonation in Non-Hydraulic Lime Mortars; University of Bath: Bath, UK, 2006. [Google Scholar]
- Kang, S.H.; Lee, S.O.; Hong, S.G.; Kwon, Y.H. Historical and Scientific Investigations into the Use of Hydraulic Lime in Korea and Preventive Conservation of Historic Masonry Structures. Sustainability 2019, 11, 5169. [Google Scholar] [CrossRef] [Green Version]
- Ince, C.; Derogar, S.; Tiryakiolu, N.Y.; Toklu, Y.C. The Influence of Zeolite and Powdered Bayburt Stones on the Water Transport Kinetics and Mechanical Properties of Hydrated Lime Mortars. Constr. Build. Mater. 2015, 98, 345–352. [Google Scholar] [CrossRef]
- Van Hees, R.P.; Binda, L.; Papayianni, I.; Toumbakari, E. Damage Analysis as a Step Towards Compatible Repair Mortars. Rilem Rep. 2015, 28, 107–152. [Google Scholar]
- Mosquera, M.J.; Silva, B.; Prieto, B.; Ruiz-Herrera, E. Addition of Cement to Lime-Based Mortars: Effect on Pore Structure and Vapor Transport. Cem. Concr. Res. 2006, 36, 1635–1642. [Google Scholar] [CrossRef]
- Sala, E.; Zanotti, C.; Passoni, C.; Marini, A. Lightweight Natural Lime Composites for Rehabilitation of Historical Heritage. Constr. Build. Mater. 2016, 125, 81–93. [Google Scholar] [CrossRef]
- Collepardi, M. Degradation and Restoration of Masonry Walls of Historical Buildings. Mater. Struct. 1990, 23, 81–102. [Google Scholar] [CrossRef]
- Zhang, D.; Zhao, J.; Wang, D.; Xu, C.; Zhai, M.; Ma, X. Comparative Study on the Properties of Three Hydraulic Lime Mortar Systems: Natural Hydraulic Lime Mortar, Cement-Aerial Lime-Based Mortar and Slag-Aerial Lime-Based Mortar. Constr. Build. Mater. 2018, 186, 45–52. [Google Scholar] [CrossRef]
- Maravelaki-Kalaitzaki, P.; Bakolas, A.; Karatasios, I.; Kilikoglou, V. Hydraulic Lime Mortars for the Restoration of Historic Masonry in Crete. Cem. Concr. Res. 2005, 35, 1577–1586. [Google Scholar] [CrossRef]
- Teutonico, J.M. Laboratory Manual for Architectural Conservators; ICCROM: Rome, Italy, 1988. [Google Scholar]
- Salavessa, E.; Jalali, S.; Sousa, L.M.O.; Fernandes, L.; Duarte, A.M. Historical plasterwork techniques inspire new formulations. Constr. Build. Mater. 2013, 48, 858–867. [Google Scholar] [CrossRef] [Green Version]
- Taglieri, G.; Otero, G.; Danielea, V.; Gioia, G.; Macera, L.; Starinieri, V.; Charola, A.E. The biocalcarenite stone of Agrigento (Italy): Preliminary investigations of compatible nanolime treatments. J. Cult. Herit. 2018, 30, 92–99. [Google Scholar] [CrossRef] [Green Version]
- Wiszecki, G.; Stiles, W.S. Colour Science, Concepts and Methods, Quantitative Data and Formulae, 2nd ed.; Wiley: New York, NY, USA, 1982. [Google Scholar]
- Mahy, M.; Van Eycken, L.; Oosterlinck, A. Evaluation of uniform color spaces developed after the adoption of CIELAB and CIELUV. Color Res. Appl. 1994, 19, 105–121. [Google Scholar]
- Brozovsky, J. Implementation of Non-Destructive Impact Hammer Testing Methods in Determination of Brick Strength. Appl. Mech. Mater. 2012, 174–177, 280–285. [Google Scholar] [CrossRef]
- EN 1015-10:1999/A1:2006; Determination of Dry Bulk Density of Hardened Mortar; CEN: Bruxelles, Belgium, 2006.
- Dracky, M.; Lesak, J.; Rescic, S.; Slızkova, Z.; Tiano, P.; Valach, J. Standardization of peeling tests for assessing the cohesion and consolidation characteristics of historic stone surfaces. Mater. Struct. 2012, 45, 505–520. [Google Scholar] [CrossRef] [Green Version]
- Scrivano, S.; Gaggero, L.; Gonzalez, A.Y.; Aguilar, J.G. Assessing surface weathering by revision and implementation of the peeling-test: In situ sampling and integrated analyses. J. Cult. Herit. 2017, 27, 88–96. [Google Scholar] [CrossRef]
- EN 12371:2010; 24.05.2019; Natural Stone Test Methods—Determination of Frost Resistance; CEN: Bruxelles, Belgium, 2019.
- Reichle, W.T.; Kang, S.Y.; Everhardt, D.S. The nature of the thermal decomposition of a catalytically active anionic clay mineral. J. Catal. 1986, 101, 352–359. [Google Scholar] [CrossRef]
- Aramendía, M.A.; Borau, V.; Jiménez, C.; Marinas, J.M.; Ruiz, J.R.; Urbano, F.J. Influence of the preparation method on the structural and surface properties of various magnesium oxides and their catalytic activity in the Meerwein-Ponndorf-Verley reaction. Appl. Catal. A Gen. 2003, 244, 207–215. [Google Scholar] [CrossRef]
- Bookin, A.S.; Cherkashin, V.I.; Drits, V.A. Polytype Diversity of the Hydrotalcite-Like Minerals II. Determination of the Polytypes of Experimentally Studied Varieties. Clays Clay Miner. 1993, 41, 558–564. [Google Scholar] [CrossRef]
- Kim, T.-H.; Lee, J.-A.; Choi, S.-J.; Oh, J.-M. Polymer Coated CaAl-Layered Double Hydroxide Nanomaterials for Potential Calcium Supplement. Int. J. Mol. Sci. 2014, 15, 22563–22579. [Google Scholar] [CrossRef] [Green Version]
- Zak, A.K.; Abd Majid, W.H.; Abrishami, M.E.; Yousefi, R. X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods. Solid State Sci. 2011, 13, 251–256. [Google Scholar]
- Hernandez-Moreno, M.J.; Ulibarri, M.A.; Rendon, J.L.; Serna, C.J. IR characteristics of hydrotalcite-like compounds. Phys. Chem. Miner. 1985, 12, 34–38. [Google Scholar]
- Moroz, T.N.; Arkhipenko, D.K. The crystal chemical study of natural hydrotalcites. Sov. Geol. Geophys. 1991, 2, 52–58. [Google Scholar]
- Kloprogge, J.T.; Wharton, D.; Hickey, L.; Frost, R.L. Infrared and Raman study of interlayer anions CO32−, NO3, SO42− and ClO4− in Mg/Al-hydrotalcite. Am. Mineral. 2002, 87, 623–629. [Google Scholar] [CrossRef]
- Frost, R.L.; Spratt, H.J.; Palmer, S.L. Infrared and near-infrared spectroscopic study of synthetic hydrotalcites with variable divalent/trivalent cationic ratios. Spectrochim. Acta A 2009, 72, 984–988. [Google Scholar] [CrossRef]
- Ion, R.-M.; Iancu, L.; Vasilievici, G.; Grigore, M.E.; Andrei, R.E.; Radu, G.-I.; Grigorescu, R.M.; Teodorescu, S.; Bucurica, I.A.; Ion, M.-L.; et al. Ion-Substituted Carbonated Hydroxyapatite Coatings for Model Stone Samples. Coatings 2019, 9, 231. [Google Scholar] [CrossRef] [Green Version]
- SR CEN/TS 772-22:2009; Metode de Încercare a Elementelor Pentru Zidărie. Partea 22: Determinarea Rezistenţei la Îngheţ/Dezgheţ a Elementelor Pentru Zidărie de Argilă; CEN: Bucuresti, Romania, 2009.
- SR EN 14617-5:2012; Piatră Aglomerată. Metode de Încercare. Partea 5: Determinarea Rezistenţei la Îngheţ şi Dezgheţ; CEN: Bucuresti, Romania, 2012.
- Thomas, T.R. Characterization of surface roughness. Precis. Eng. 1981, 3, 97–104. [Google Scholar] [CrossRef]
- ISO:4287; Geometrical Product Specifications (GPS). Surface Texture: Profile Method. Terms, Definitions and Surface Texture Parameters; International Organization for Standardization: Geneva, Switzerland, 1997.
Size (µm) | 146.3 | 196.5 | 261.7 | 349.01 | 465.5 | 621 | 828.2 | 1104 | 1472 | 1967 |
Amount (%) | 0 | 1.4 | 14.6 | 50.3 | 85.2 | 98.0 | 99.7 | 99.6 | 99.6 | 100 |
File Name | FWHM (°) | Crystalite Size Scherrer Eq (Å) | |
---|---|---|---|
(003) | (006) | ||
CaAl-LDH | 0.543 | 0.537 | 155 |
MgAl-LDH | 0.668 | 0.631 | 130 |
CaMgAl-LDH | 1.615 | 1.876 | 49 |
File Name | a(A) | b(A) | c(A) | Crystalite Size (Å) W-H | Crystalite Size (Å) Scherrer Eq | Strain [%] | Crystallinity [%] |
---|---|---|---|---|---|---|---|
CaAl-LDH | 10.053 | 5.770 | 16.341 | 113 | 155 | 0.6 | 97 |
MgAl-LDH | 3.066 | 3.066 | 23.901 | 107 | 130 | 0.5 | 98 |
CaMgAl-LDH | 3.047 | 3.047 | 23.56 | 40 | 49 | 1 | 85 |
Element/Ratio | Mass% | ||
---|---|---|---|
CaMgAl-LDH | MgAl-LDH | CaAl-LDH | |
C | 1.25 | 3.2 | 1.81 |
O | 51.42 | 55.02 | 47.04 |
Na | 0.279 | / | 0.02 |
Mg | 16.39 | 23.67 | 0.04 |
Al | 12.73 | 9.32 | 10.77 |
Si | 0.11 | 0.06 | 0.33 |
S | 0.05 | 0.08 | 0.04 |
Cl | 6.82 | 8.68 | 7.71 |
Ca | 10.91 | 0.01 | 32.21 |
Fe | 0.01 | 0.02 | / |
Molar ratio M2+/M3+ | 2.02 | 2.85 | 2.01 |
Theoretical ratio M2+/M3+ | 3.0 | 3.0 | 2.33 |
Brushed Samples | ||||
---|---|---|---|---|
Sample | Test Sample | Consolidation with MgAl-LDH | Consolidation with CaAl-LDH | Consolidation with CaMgAl-LDH |
ΔE* | / | 1.1 | 0.61 | 2.2 |
Compressive strength, Mpa | 8.27 | 8.66 | 8.47 | 8.33 |
Peeling (consolidation capacity), % | / | 37.1 | 9.6 | 17.7 |
Water absorption, % | 15.7 | 15.03 | 12.99 | 16.41 |
Apparent porosity, % | 37.89 | 36.24 | 31.18 | 39.55 |
Freezing coefficient, μg (30 cycles) | 14.23 | 12.96 | 14.33 | 12.5 |
Samples with Consolidants Incorporated | ||||
---|---|---|---|---|
Sample | Test Sample | Consolidation with MgAl-LDH | Consolidation with CaAl-LDH | Consolidation with CaMgAl-LDH |
ΔE* | / | 4.41 | 3.97 | 3.11 |
Compressive strength (MPa) | 11.07 | 8.98 | 10.20 | 8.85 |
Water absorption (%) | 14.87 | 19.91 | 15.22 | 19.2 |
Apparent porosity (%) | 33.62 | 46.40 | 32.86 | 45.90 |
Material | Specific Surface (m2/g) | Pore Total Volume (cm3/g) | Pore Mean Diameter (nm) |
---|---|---|---|
MgAl-LDH | 49.7 | 0.3588 | 28.88 |
MgCaAl-LDH | 39.69 | 0.1082 | 10.91 |
CaAl-LDH | 16.09 | 0.0984 | 24.47 |
brushed brick (MgAl-LDH) | 5.373 | 0.0190 | 14.16 |
brushed brick (MgCaAl-LDH) | 7.23 | 0.0205 | 11.37 |
brushed brick (CaAl-LDH) | 8.390 | 0.0259 | 12.36 |
brick with 5% MgAl-LDH | 6.584 | 0.0176 | 10.71 |
brick with 5% MgCaAl-LDH | 9.509 | 0.0268 | 11.30 |
brick with 5% CaAl-LDH | 6.750 | 0.0227 | 13.47 |
Sample | Rq | Ra | Rsk | Rku | Rp | Rv | Rt |
---|---|---|---|---|---|---|---|
Control | 135.1068 | 123.6610 | 1.2249 | 1.6196 | 255 | 9.6666 | 264.6666 |
MgAl-LDH incorporated | 136.1557 | 123.8434 | 1.2377 | 1.6552 | 247.3333 | 16.6666 | 264.0002 |
CaAl-LDH incorporated | 130.4262 | 122.3285 | 1.1666 | 1.4541 | 254.6666 | 11.2345 | 265.6666 |
CaMgAl-LDH incorporated | 132.5060 | 123.1210 | 1.1855 | 1.5033 | 255.0322 | 10.6666 | 265.6666 |
CaAl-LDH brushed | 113.9378 | 103.7293 | 1.2566 | 1.7344 | 250.6666 | 17.6666 | 268.3333 |
MgAl-LDH brushed | 109.0225 | 103.1905 | 1.1479 | 1.4045 | 255.0098 | 13.6666 | 268.6666 |
CaMgAl-LDH brushed | 119.0021 | 103.9313 | 1.3022 | 1.8269 | 249.6666 | 4.3333 | 254.3678 |
Element | C | CaAl-LDH | MgAl-LDH | CaMgAl-LDH |
---|---|---|---|---|
wt% | wt% | wt% | wt% | |
OK | 25.86 ± 0.0291 | 27.62 ± 0.0316 | 25.62 ± 0.0286 | 17.35 ± 0.0174 |
NaK | 4 ± 0.0106 | 4.1 ± 0.0108 | 1.74 ± 0.004 | 2.19 ± 0.0051 |
MgK | 4.88 ± 0.0159 | 2.2 ± 0.0073 | ||
AlK | 0.92 ± 0.0046 | 1.06 ± 0.0053 | 2.54 ± 0.0102 | 3.19 ± 0.0136 |
SiK | 1.6 ± 0.0106 | 1.15 ± 0.0074 | 2.35 ± 0.0123 | 3.21 ± 0.0178 |
SK | 28.47 ± 0.2314 | 27.29 ± 0.2316 | 25.37 ± 0.1886 | 30.21 ± 0.229 |
CaK | 39.15 ± 0.331 | 38.78 ± 0.3298 | 35.65 ± 0.2859 | 40.35 ± 0.3156 |
FeK | 1.85 ± 0.015 | 1.3 ± 0.0104 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ion, R.-M.; Rizescu, C.E.; Vasile, D.A.; Vasilievici, G.; Atkinson, I.; Rusu, A.; Predoana, L.; Miculescu, F. Layered Double Hydroxides (LDHs) as New Consolidants for Cultural Heritage Masonry. Crystals 2022, 12, 490. https://doi.org/10.3390/cryst12040490
Ion R-M, Rizescu CE, Vasile DA, Vasilievici G, Atkinson I, Rusu A, Predoana L, Miculescu F. Layered Double Hydroxides (LDHs) as New Consolidants for Cultural Heritage Masonry. Crystals. 2022; 12(4):490. https://doi.org/10.3390/cryst12040490
Chicago/Turabian StyleIon, Rodica-Mariana, Claudiu Eduard Rizescu, Dan Adrian Vasile, Gabriel Vasilievici, Irina Atkinson, Adriana Rusu, Luminita Predoana, and Florin Miculescu. 2022. "Layered Double Hydroxides (LDHs) as New Consolidants for Cultural Heritage Masonry" Crystals 12, no. 4: 490. https://doi.org/10.3390/cryst12040490
APA StyleIon, R. -M., Rizescu, C. E., Vasile, D. A., Vasilievici, G., Atkinson, I., Rusu, A., Predoana, L., & Miculescu, F. (2022). Layered Double Hydroxides (LDHs) as New Consolidants for Cultural Heritage Masonry. Crystals, 12(4), 490. https://doi.org/10.3390/cryst12040490