Bismuth Oxychloride Nanomaterials Fighting for Human Health: From Photodegradation to Biomedical Applications
Abstract
:1. Introduction
2. BiOCl NMs Used for Treating Environmental Pollution
2.1. Improved Photodegradation Efficacy through Regulating Morphologies
2.2. Improved Photodegradation Efficacy through Forming Heterostructures
3. BiOCl NMs Used as Theranostic Platform
3.1. Bioimaging
3.2. Biosensor
3.3. Antibacterial
3.4. Anticancer
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tong, H.; Ouyang, S.; Bi, Y.; Umezawa, N.; Oshikiri, M.; Ye, J. Nano-photocatalytic materials: Possibilities and challenges. Adv. Mater. 2012, 24, 229–251. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, L.; Yu, P.Y.; Mao, S.S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746–750. [Google Scholar] [CrossRef] [PubMed]
- Chong, M.N.; Jin, B.; Chow, C.W.; Saint, C. Recent developments in photocatalytic water treatment technology: A review. Water Res. 2010, 44, 2997–3027. [Google Scholar] [CrossRef] [PubMed]
- Linic, S.; Christopher, P.; Ingram, D.B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911–921. [Google Scholar] [CrossRef]
- Ni, M.; Leung, M.K.H.; Leung, D.Y.C.; Sumathy, K. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sustain. Energy Rev. 2007, 11, 401–425. [Google Scholar] [CrossRef]
- Chen, X.; Shen, S.; Guo, L.; Mao, S.S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570. [Google Scholar] [CrossRef]
- Wu, M.; Huang, H.; Leung, D.Y.C. A review of volatile organic compounds (VOCs) degradation by vacuum ultraviolet (VUV) catalytic oxidation. J. Environ. Manage. 2022, 307, 114559. [Google Scholar] [CrossRef]
- Xu, Z.; Ao, Z.; Yang, M.; Wang, S. Recent progress in single-atom alloys: Synthesis, properties, and applications in environmental catalysis. J. Hazard. Mater. 2022, 424, 127427. [Google Scholar] [CrossRef]
- Saravanan, A.; Kumar, P.S.; Jeevanantham, S.; Anubha, M.; Jayashree, S. Degradation of toxic agrochemicals and pharmaceutical pollutants: Effective and alternative approaches toward photocatalysis. Environ. Pollut. 2022, 298, 118844. [Google Scholar] [CrossRef]
- Saya, L.; Malik, V.; Gautam, D.; Gambhir, G.; Singh, W.R.; Hooda, S. A comprehensive review on recent advances toward sequestration of levofloxacin antibiotic from wastewater. Sci. Total Environ. 2022, 813, 152529. [Google Scholar] [CrossRef]
- Khin, M.M.; Nair, A.S.; Babu, V.J.; Murugan, R.; Ramakrishna, S. A review on nanomaterials for environmental remediation. Energy Environ. Sci. 2012, 5, 8075–8109. [Google Scholar] [CrossRef]
- Baran, W.; Adamek, E.; Ziemianska, J.; Sobczak, A. Effects of the presence of sulfonamides in the environment and their influence on human health. J. Hazard. Mater. 2011, 196, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Barakat, M.A. New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 2011, 4, 361–377. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.; Zeng, G.M.; Huang, D.L.; Feng, C.L.; Hu, S.; Zhao, M.H.; Lai, C.; Wei, Z.; Huang, C.; Xie, G.X.; et al. Use of iron oxide nanomaterials in wastewater treatment: A review. Sci. Total Environ. 2012, 424, 1–10. [Google Scholar] [CrossRef]
- Uyguner Demirel, C.S.; Birben, N.C.; Bekbolet, M. A comprehensive review on the use of second generation TiO2 photocatalysts: Microorganism inactivation. Chemosphere 2018, 211, 420–448. [Google Scholar] [CrossRef] [PubMed]
- Josset, S.; Keller, N.; Lett, M.C.; Ledoux, M.J.; Keller, V. Numeration methods for targeting photoactive materials in the UV-A photocatalytic removal of microorganisms. Chem. Soc. Rev. 2008, 37, 744–755. [Google Scholar] [CrossRef]
- Chen, R.; Xie, Y.; Meng, S.; Yan, Y.; Yang, Q.; Wang, L.; Wang, X. Protoporphyrin IX functionalized α-Fe2O3 for enhanced photocatalytic and antimicrobial activity under sunlight. Funct. Mater. Lett. 2019, 12, 1950079. [Google Scholar] [CrossRef]
- Zinatloo-Ajabshir, S.; Baladi, M.; Salavati-Niasari, M. Sono-synthesis of MnWO4 ceramic nanomaterials as highly efficient photocatalysts for the decomposition of toxic pollutants. Ceram. Int. 2021, 47, 30178–30187. [Google Scholar] [CrossRef]
- Zinatloo-Ajabshir, S.; Baladi, M.; Salavati-Niasari, M. Enhanced visible-light-driven photocatalytic performance for degradation of organic contaminants using PbWO4 nanostructure fabricated by a new, simple and green sonochemical approach. Ultrason. Sonochem. 2021, 72, 105420. [Google Scholar] [CrossRef]
- Chen, R.; Xie, Y.B.; Chen, G.L.; Yang, X.D.; Lu, X.; Wang, L.L. Phase, optical property, and photocatalytic performance behaviors of non-stoichiometric bismuth oxyiodide. Inorg. Nano-Metal. Chem. 2021, 51, 1226–1231. [Google Scholar] [CrossRef]
- Wang, L.; Meng, S.; Chen, G.; Yang, X.; Yan, Y.; Chen, R. Relationship between secondary phase and photocatalytic activity in titanium-doped bismuth ferrite nanocrystals. Micro Nano Lett. 2020, 15, 713–716. [Google Scholar] [CrossRef]
- Craciun, A.M.; Focsan, M.; Magyari, K.; Vulpoi, A.; Pap, Z. Surface Plasmon Resonance or Biocompatibility-Key Properties for Determining the Applicability of Noble Metal Nanoparticles. Materials 2017, 10, 836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pal, K.; Asthana, N.; Aljabali, A.A.; Bhardwaj, S.K.; Kralj, S.; Penkova, A.; Thomas, S.; Zaheer, T.; de Souza, F.G. A critical review on multifunctional smart materials ‘nanographene’ emerging avenue: Nano-imaging and biosensor applications. Crit. Rev. Solid State Mater. Sci. 2021, 1–17. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, H.Y. Novel Bismuth-Based Nanomaterials Used for Cancer Diagnosis and Therapy. Chem.—A Eur. J. 2018, 24, 17405–17418. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Chang, Y.; Feng, Y.; Jian, H.; Wu, X.; Zheng, R.; Xu, K.; Zhang, H. Bismuth Sulfide Nanorods with Retractable Zinc Protoporphyrin Molecules for Suppressing Innate Antioxidant Defense System and Strengthening Phototherapeutic Effects. Adv. Mater. 2019, 31, 1806808. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Kong, X.; Chang, Y.; Feng, Y.; Zheng, R.; Wu, X.; Xu, K.; Gao, X.; Zhang, H. Spatiotemporally Synchronous Oxygen Self-Supply and Reactive Oxygen Species Production on Z-Scheme Heterostructures for Hypoxic Tumor Therapy. Adv. Mater. 2020, 32, e1908109. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jiang, H.Y.; Wang, X.; Hong, X.D.; Liang, B. Recent advances in bismuth oxyhalide photocatalysts for degradation of organic pollutants in wastewater. RSC Adv. 2021, 11, 26855–26875. [Google Scholar] [CrossRef]
- Wang, Z.W.; Chen, M.; Huang, D.L.; Zeng, G.M.; Xu, P.; Zhou, C.Y.; Lai, C.; Wang, H.; Cheng, M.; Wang, W.J. Multiply structural optimized strategies for bismuth oxyhalide photocatalysis and their environmental application. Chem. Eng. J. 2019, 374, 1025–1045. [Google Scholar] [CrossRef]
- Younis, M.R.; He, G.; Qu, J.; Lin, J.; Huang, P.; Xia, X.H. Inorganic Nanomaterials with Intrinsic Singlet Oxygen Generation for Photodynamic Therapy. Adv. Sci. 2021, 8, e2102587. [Google Scholar] [CrossRef]
- Zemann, J. Crystal structures, 2nd edition. Vol. 1 by R. W. G. Wyckoff. Acta Crystallogr. 1965, 18, 139. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Li, J.; Ai, Z.; Jia, F.; Zhang, L. Oxygen Vacancy-Mediated Photocatalysis of BiOCl: Reactivity, Selectivity, and Perspectives. Angew Chem. Int. Ed. Engl. 2018, 57, 122–138. [Google Scholar] [CrossRef] [PubMed]
- Ren, Q.; Liu, J.M.; Yang, Q.; Shen, W. A Review: Photocatalysts Based on BiOCl and g-C3N4 for Water Purification. Catalysts 2021, 11, 1084. [Google Scholar] [CrossRef]
- Yang, X.L.; Sun, S.D.; Cui, J.; Yang, M.; Luo, Y.G.; Liang, S.H. Synthesis, Functional Modifications, and Diversified Applications of Hybrid BiOCl-Based Heterogeneous Photocatalysts: A Review. Cryst. Growth Des. 2021, 21, 6576–6618. [Google Scholar] [CrossRef]
- Xiao, X.; Liu, C.; Hu, R.; Zuo, X.; Nan, J.; Li, L.; Wang, L. Oxygen-rich bismuth oxyhalides: Generalized one-pot synthesis, band structures and visible-light photocatalytic properties. J. Mater. Chem. 2012, 22, 22840. [Google Scholar] [CrossRef]
- Li, M.; Zhang, J.; Gao, H.; Li, F.; Lindquist, S.E.; Wu, N.; Wang, R. Microsized BiOCl Square Nanosheets as Ultraviolet Photodetectors and Photocatalysts. ACS Appl. Mater. Interfaces 2016, 8, 6662–6668. [Google Scholar] [CrossRef]
- Lei, Y.Q.; Wang, G.H.; Song, S.Y.; Fan, W.Q.; Zhang, H.J. Synthesis, characterization and assembly of BiOCl nanostructure and their photocatalytic properties. Crystengcomm 2009, 11, 1857–1862. [Google Scholar] [CrossRef]
- Cai, Y.J.; Li, D.Y.; Sun, J.Y.; Chen, M.D.; Li, Y.R.; Zou, Z.W.; Zhang, H.; Xu, H.M.; Xia, D.S. Synthesis of BiOCl nanosheets with oxygen vacancies for the improved photocatalytic properties. Appl. Surf. Sci. 2018, 439, 697–704. [Google Scholar] [CrossRef]
- Hou, J.H.; Dai, D.; Wei, R.; Wu, X.G.; Wang, X.Z.; Tahir, M.; Zou, J.J. Narrowing the Band Gap of BiOCI for the Hydroxyl Radical Generation of Photocatalysis under Visible Light. ACS Sustain. Chem. Eng. 2019, 7, 16569–16576. [Google Scholar] [CrossRef]
- Cheng, G.; Xiong, J.Y.; Stadler, F.J. Facile template-free and fast refluxing synthesis of 3D desertrose-like BiOCl nanoarchitectures with superior photocatalytic activity. New J. Chem. 2013, 37, 3207–3213. [Google Scholar] [CrossRef]
- Hu, J.L.; Fan, W.J.; Ye, W.Q.; Huang, C.J.; Qiu, X.Q. Insights into the photosensitivity activity of BiOCl under visible light irradiation. Appl. Catal. B Environ. 2014, 158, 182–189. [Google Scholar] [CrossRef]
- Zhu, L.P.; Liao, G.H.; Bing, N.C.; Wang, L.L.; Yang, Y.; Xie, H.Y. Self-assembled 3D BiOCl hierarchitectures: Tunable synthesis and characterization. Crystengcomm 2010, 12, 3791–3796. [Google Scholar] [CrossRef]
- Xiong, J.; Cheng, G.; Li, G.; Qin, F.; Chen, R. Well-crystallized square-like 2D BiOCl nanoplates: Mannitol-assisted hydrothermal synthesis and improved visible-light-driven photocatalytic performance. RSC Adv. 2011, 1, 1542–1553. [Google Scholar] [CrossRef]
- Zhang, K.; Liang, J.; Wang, S.; Liu, J.; Ren, K.X.; Zheng, X.; Luo, H.; Peng, Y.J.; Zou, X.; Bo, X.; et al. BiOCI Sub-Microcrystals Induced by Citric Acid and Their High Photocatalytic Activities. Cryst. Growth Des. 2012, 12, 793–803. [Google Scholar] [CrossRef]
- Wu, S.J.; Wang, C.; Cui, Y.F.; Hao, W.C.; Wang, T.M.; Brault, P. BiOCl nano/microstructures on substrates: Synthesis and photocatalytic properties. Mater. Lett. 2011, 65, 1344–1347. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.J.; Wang, C.; Cui, Y.F.; Wang, T.M.; Huang, B.B.; Zhang, X.Y.; Qin, X.Y.; Brault, P. Synthesis and photocatalytic properties of BiOCl nanowire arrays. Mater. Lett. 2010, 64, 115–118. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Chen, Z.Y.; Jing, J.P.; Feng, C.; Sun, M.M.; Li, W.B. Enhanced photocatalytic activity of BiOCl with regulated morphology and band structure through controlling the adding amount of HCl. Mater. Lett. 2020, 272, 127860. [Google Scholar] [CrossRef]
- Cui, P.Z.; Wang, J.L.; Wang, Z.M.; Chen, J.; Xing, X.R.; Wang, L.Z.; Yu, R.B. Bismuth oxychloride hollow microspheres with high visible light photocatalytic activity. Nano Res. 2016, 9, 593–601. [Google Scholar] [CrossRef]
- Xiong, J.Y.; Cheng, G.; Qin, F.; Wang, R.M.; Sun, H.Z.; Chen, R. Tunable BiOCl hierarchical nanostructures for high-efficient photocatalysis under visible light irradiation. Chem. Eng. J. 2013, 220, 228–236. [Google Scholar] [CrossRef]
- Ma, X.; Cheng, Y.; Jian, H.; Feng, Y.; Chang, Y.; Zheng, R.; Wu, X.; Wang, L.; Li, X.; Zhang, H. Hollow, Rough, and Nitric Oxide-Releasing Cerium Oxide Nanoparticles for Promoting Multiple Stages of Wound Healing. Adv. Healthc. Mater. 2019, 8, e1900256. [Google Scholar] [CrossRef]
- Liu, N.; Chang, Y.; Feng, Y.; Cheng, Y.; Sun, X.; Jian, H.; Feng, Y.; Li, X.; Zhang, H. {101}-{001} Surface Heterojunction-Enhanced Antibacterial Activity of Titanium Dioxide Nanocrystals Under Sunlight Irradiation. ACS Appl. Mater. Interfaces 2017, 9, 5907–5915. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, X.; Dong, Y.; Xia, Y.; Wang, H.; Zhu, X. Fabrication of a Z-Scheme {001}/{110} Facet Heterojunction in BiOCl to Promote Spatial Charge Separation. ACS Appl. Mater. Interfaces 2020, 12, 31532–31541. [Google Scholar] [CrossRef] [PubMed]
- Heidari, S.; Haghighi, M.; Shabani, M. Sunlight-activated BiOCl/BiOBr–Bi24O31Br10 photocatalyst for the removal of pharmaceutical compounds. J. Clean. Prod. 2020, 259, 120679. [Google Scholar] [CrossRef]
- Jia, X.; Cao, J.; Lin, H.; Zhang, M.; Guo, X.; Chen, S. Transforming type-I to type-II heterostructure photocatalyst via energy band engineering: A case study of I-BiOCl/I-BiOBr. Appl. Catal. B Environ. 2017, 204, 505–514. [Google Scholar] [CrossRef]
- Chang, X.; Yu, G.; Huang, J.; Li, Z.; Zhu, S.; Yu, P.; Cheng, C.; Deng, S.; Ji, G. Enhancement of photocatalytic activity over NaBiO3/BiOCl composite prepared by an in situ formation strategy. Catal. Today 2010, 153, 193–199. [Google Scholar] [CrossRef]
- Duo, F.; Wang, Y.; Mao, X.; Zhang, X.; Wang, Y.; Fan, C. A BiPO4/BiOCl heterojunction photocatalyst with enhanced electron-hole separation and excellent photocatalytic performance. Appl. Surf. Sci. 2015, 340, 35–42. [Google Scholar] [CrossRef]
- He, Z.; Shi, Y.; Gao, C.; Wen, L.; Chen, J.; Song, S. BiOCl/BiVO4 p–n Heterojunction with Enhanced Photocatalytic Activity under Visible-Light Irradiation. J. Phys. Chem. C 2014, 118, 389–398. [Google Scholar] [CrossRef]
- Liu, F.-Y.; Jiang, Y.-R.; Chen, C.-C.; Lee, W.W. Novel synthesis of PbBiO2Cl/BiOCl nanocomposite with enhanced visible-driven-light photocatalytic activity. Catal. Today 2018, 300, 112–123. [Google Scholar] [CrossRef]
- Sun, Y.; Qi, X.; Li, R.; Xie, Y.; Tang, Q.; Ren, B. Hydrothermal synthesis of 2D/2D BiOCl/g-C3N4 Z-scheme: For TC degradation and antimicrobial activity evaluation. Opt. Mater. 2020, 108, 110170. [Google Scholar] [CrossRef]
- Gao, X.; Tang, G.; Peng, W.; Guo, Q.; Luo, Y. Surprise in the phosphate modification of BiOCl with oxygen vacancy: In situ construction of hierarchical Z-scheme BiOCl-OV-BiPO4 photocatalyst for the degradation of carbamazepine. Chem. Eng. J. 2019, 360, 1320–1329. [Google Scholar] [CrossRef]
- Li, Q.; Guan, Z.; Wu, D.; Zhao, X.; Bao, S.; Tian, B.; Zhang, J. Z-Scheme BiOCl-Au-CdS Heterostructure with Enhanced Sunlight-Driven Photocatalytic Activity in Degrading Water Dyes and Antibiotics. ACS Sustain. Chem. Eng. 2017, 5, 6958–6968. [Google Scholar] [CrossRef]
- Gorbach, S.L. Bismuth therapy in gastrointestinal diseases. Gastroenterology 1990, 99, 863–875. [Google Scholar] [CrossRef]
- Bierer, D.W. Bismuth subsalicylate: History, chemistry, and safety. Rev. Infect. Dis. 1990, 12 (Suppl. 1), S3–S8. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Mo, Y.; Liu, J.; Guo, R.; Zhang, Y.; Xue, W.; Zhang, Y. In Vitro Study of SnS2, BiOCl and SnS2-Incorporated BiOCl Inorganic Nanoparticles Used as Doxorubicin Carrier. J. Nanosci. Nanotechnol. 2016, 16, 5740–5745. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, R.; Liu, D.; Tian, Y.; Ye, L. Prussian Blue Analogue Islands on BiOCl-Se Nanosheets for MR/CT Imaging-Guided Photothermal/Photodynamic Cancer Therapy. ACS Appl. Biol. Mater. 2019, 2, 1213–1224. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Hu, R.; Wang, C.; Liu, Z.; Zhang, S.; Yu, L.; Chen, Y.; Zhang, B. Defect engineering of 2D BiOCl nanosheets for photonic tumor ablation. Nanoscale Horiz. 2020, 5, 857–868. [Google Scholar] [CrossRef]
- Zhang, X.H.; Guo, R.C.; Chen, Y.F.; Xu, X.; Yang, Z.X.; Cheng, D.B.; Chen, H.; Qiao, Z.Y.; Wang, H. A BiOCl nanodevice for pancreatic tumor imaging and mitochondria-targeted therapy. Nano Today 2021, 40, 101285. [Google Scholar] [CrossRef]
- Jang, J.; Kim, K.; Yoon, J.; Park, C.B. Piezoelectric materials for ultrasound-driven dissociation of Alzheimer’s beta-amyloid aggregate structure. Biomaterials 2020, 255, 120165. [Google Scholar] [CrossRef]
- Ma, S.; Wang, L.; Liu, Z.; Luo, X.; Zhou, Z.; Xie, J.; Li, Y.; Cong, S.; Zhou, M.; Xu, Y.; et al. “One stone, two birds”: Engineering 2-D ultrathin heterostructure nanosheet BiNS@NaLnF4 for dual-modal computed tomography/magnetic resonance imaging guided, photonic synergetic theranostics. Nanoscale 2021, 13, 185–194. [Google Scholar] [CrossRef]
- Wang, H.; Yang, W.; Bian, K.; Zeng, W.; Jin, X.; Ouyang, R.; Xu, Y.; Dai, C.; Zhou, S.; Zhang, B. Oxygen-Deficient BiOCl Combined with L-Buthionine-Sulfoximine Synergistically Suppresses Tumor Growth through Enhanced Singlet Oxygen Generation under Ultrasound Irradiation. Small 2021, 18, e2104550. [Google Scholar] [CrossRef]
- Guo, Z.; Zhu, S.; Yong, Y.; Zhang, X.; Dong, X.; Du, J.; Xie, J.; Wang, Q.; Gu, Z.; Zhao, Y. Synthesis of BSA-Coated BiOI@Bi2S3 Semiconductor Heterojunction Nanoparticles and Their Applications for Radio/Photodynamic/Photothermal Synergistic Therapy of Tumor. Adv. Mater. 2017, 29, 1704136. [Google Scholar] [CrossRef]
- Xu, L.; He, F.; Wang, C.; Gai, S.; Gulzar, A.; Yang, D.; Zhong, C.; Yang, P. Lanthanide-doped bismuth oxobromide nanosheets for self-activated photodynamic therapy. J. Mater. Chem. B 2017, 5, 7939–7948. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.W.; Xu, J.J.; Chen, H.Y. Photoelectrochemical aptasensing. TrAC Trends Anal. Chem. 2016, 82, 307–315. [Google Scholar] [CrossRef]
- Xu, L.; Yan, P.C.; Li, H.N.; Ling, S.Y.; Xia, J.X.; Qiu, J.X.; Xu, Q.; Li, H.M.; Yuan, S.Q. Metallic Bi self-doping BiOCl composites: Synthesis and enhanced photoelectrochemical performance. Mater. Lett. 2017, 196, 225–229. [Google Scholar] [CrossRef]
- Xu, L.; Li, H.; Yan, P.; Xia, J.; Qiu, J.; Xu, Q.; Zhang, S.; Li, H.; Yuan, S. Graphitic carbon nitride/BiOCl composites for sensitive photoelectrochemical detection of ciprofloxacin. J. Colloid Interface Sci. 2016, 483, 241–248. [Google Scholar] [CrossRef]
- Yang, M.; Chen, Y.; Yan, P.; Dong, J.; Duan, W.; Xu, L.; Li, H. A photoelectrochemical aptasensor of ciprofloxacin based on Bi24O31Cl10/BiOCl heterojunction. Mikrochim. Acta 2021, 188, 289. [Google Scholar] [CrossRef]
- Xu, L.; He, X.; Dong, J.; Yan, P.; Chen, F.; Zhang, J.; Li, H. A photoelectrochemical aptasensor for sensitively monitoring chloramphenicol using plasmon-driven AgNP/BiOCl composites. Analyst 2020, 145, 7695–7700. [Google Scholar] [CrossRef]
- Zeng, R.; Luo, Z.; Su, L.; Zhang, L.; Tang, D.; Niessner, R.; Knopp, D. Palindromic Molecular Beacon Based Z-Scheme BiOCl-Au-CdS Photoelectrochemical Biodetection. Anal. Chem. 2019, 91, 2447–2454. [Google Scholar] [CrossRef]
- Yan, P.C.; Mo, Z.; Dong, J.T.; Chen, F.; Qian, J.C.; Xia, J.X.; Xu, L.; Zhang, J.M.; Li, H.N. Construction of Mn valence-engineered MnO2/BiOCl heterojunction coupled with carriers-trapping effect for enhanced photoelectrochemical lincomycin aptasensor. Sens. Actuators B-Chem. 2020, 320, 128415. [Google Scholar] [CrossRef]
- Yan, P.; Xu, L.; Xia, J.; Huang, Y.; Qiu, J.; Xu, Q.; Zhang, Q.; Li, H. Photoelectrochemical sensing of 4-chlorophenol based on Au/BiOCl nanocomposites. Talanta 2016, 156–157, 257–264. [Google Scholar] [CrossRef]
- Yan, P.C.; Jiang, D.S.; Li, H.N.; Biao, J.; Xu, L.; Qian, J.C.; Chen, C.; Xia, J.X. BiPO4 nanocrystal/BiOCl nanosheet heterojunction as the basis for a photoelectrochemical 4-chlorophenol sensor. Sens. Actuators B-Chem. 2019, 279, 466–475. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, B.; Zhao, F.; Zeng, B. One-Pot Synthesis of N-Graphene Quantum Dot-Functionalized I-BiOCl Z-Scheme Cathodic Materials for "Signal-Off" Photoelectrochemical Sensing of Chlorpyrifos. ACS Appl. Mater. Interfaces 2018, 10, 35281–35288. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.N.; Mi, Y.; Tan, X.C.; Chen, Q.Y.; Feng, D.F.; Ai, C.H. Ultrathin BiOCl nanosheet modified TiO2 for the photoelectrochemical sensing of chlorpyrifos. Anal. Methods 2019, 11, 375–380. [Google Scholar] [CrossRef]
- Yan, X.R.; Li, J.; Kong, L.F.; Li, M.Y.; Li, H.L.; Qian, C.; Wang, M.; Zhang, X.F.; Lu, Y.; Han, J.Y.; et al. AuNPs/g-C3N4/BiOCl0.5Br0.5 Heterojunction Sensitizing Sensor for Photoelectrochemical Sensing of 2-Chloroethyl Phosphoric Acid. Chin. J. Anal. Chem. 2021, 49, 797–805. [Google Scholar] [CrossRef]
- Gopalan, A.I.; Muthuchamy, N.; Lee, K.P. A novel bismuth oxychloride-graphene hybrid nanosheets based non-enzymatic photoelectrochemical glucose sensing platform for high performances. Biosens. Bioelectron. 2017, 89, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.P.; Xu, G.Q.; Wang, J.W.; Lv, J.; Zheng, Z.X.; Wu, Y.C. Photoelectrochemical properties of TiO2 Nanotube Arrays Modified with BiOCl nanosheets. Electrochim. Acta 2014, 130, 213–221. [Google Scholar] [CrossRef]
- Ijaz, H.; Zia, R.; Taj, A.; Jameel, F.; Butt, F.K.; Asim, T.; Jameel, N.; Abbas, W.; Iqbal, M.; Bajwa, S.Z.; et al. Synthesis of BiOCl nanoplatelets as the dual interfaces for the detection of glutathione linked disease biomarkers and biocompatibility assessment in vitro against HCT cell lines model. Appl. Nanosci. 2020, 10, 3569–3576. [Google Scholar] [CrossRef]
- Li, H.A.; Zhu, M.Y.; Chen, W.; Wang, K. Ternary heterojunctions composed of BiOCl, BiVO4 and nitrogen-doped carbon quantum dots for use in photoelectrochemical sensing: Effective charge separation and application to ultrasensitive sensing of dopamine. Microchim. Acta 2017, 184, 4827–4833. [Google Scholar] [CrossRef]
- Yu, L.D.; Wang, Y.N.; Zhang, X.Y.; Li, N.A.B.; Luo, H.Q. A novel signal-on photoelectrochemical platform for highly sensitive detection of alkaline phosphatase based on dual Z-scheme CdS/Bi2S3/BiOCl composites. Sens. Actuators B-Chem. 2021, 340, 129988. [Google Scholar] [CrossRef]
- Zhang, B.; Jia, Y.; Wang, J.; Hu, X.; Zhao, Z.; Cheng, Y. Cysteine-assisted photoelectrochemical immunoassay for the carcinoembryonic antigen by using an ITO electrode modified with C3N4-BiOCl semiconductor and CuO nanoparticles as antibody labels. Mikrochim. Acta 2019, 186, 633. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, B.; Xi, J.; Zhao, F.; Zeng, B. Z-scheme I-BiOCl/CdS with abundant oxygen vacancies as highly effective cathodic material for photocathodic immunoassay. Biosens. Bioelectron. 2019, 141, 111443. [Google Scholar] [CrossRef]
- Mao, L.B.; Liu, H.; Yao, L.L.; Wen, W.; Chen, M.M.; Zhang, X.H.; Wang, S.F. Construction of a dual-functional CuO/BiOCl heterojunction for high-efficiently photoelectrochemical biosensing and photoelectrocatalytic degradation of aflatoxin B1. Chem. Eng. J. 2022, 429, 132297. [Google Scholar] [CrossRef]
- Song, Y.Y.; Jiang, H.J.; Shi, X.Y.; Chen, J.; Wu, Y.; Wei, W. Detection of Lead Using a Sensitive Anodic Stripping Voltammetric Method Based on Composite Mesoporous Silica/Bismuth Oxychloride Modified Electrode. Chemistryselect 2018, 3, 2423–2429. [Google Scholar] [CrossRef]
- Jahani, P.M.; Javar, H.A.; Mahmoudi-Moghaddam, H. Development of a novel electrochemical sensor using the FeNi3/CuS/BiOCl nanocomposite for determination of naproxen. J. Mater. Sci.-Mater. Electron. 2020, 31, 14022–14034. [Google Scholar] [CrossRef]
- Gao, J.; Liu, M.; Song, H.; Zhang, S.; Qian, Y.; Li, A. Highly-sensitive electrocatalytic determination for toxic phenols based on coupled cMWCNT/cyclodextrin edge-functionalized graphene composite. J. Hazard. Mater. 2016, 318, 99–108. [Google Scholar] [CrossRef]
- Pitz, A.M.; Park, G.W.; Lee, D.; Boissy, Y.L.; Vinje, J. Antimicrobial activity of bismuth subsalicylate on Clostridium difficile, Escherichia coli O157:H7, norovirus, and other common enteric pathogens. Gut Microbes 2015, 6, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Jiang, H.; Bi, H.; Zhong, G.; Chen, J.; Wu, Y.; Wei, W. Multifunctional Bismuth Oxychloride/Mesoporous Silica Composites for Photocatalysis, Antibacterial Test, and Simultaneous Stripping Analysis of Heavy Metals. ACS Omega 2018, 3, 973–981. [Google Scholar] [CrossRef]
- Chen, J.; Ren, Q.F.; Ding, Y.; Xiong, C.Y.; Guo, W.M. Synthesis of bifunctional composites Ag/BiOCl/diatomite: Degradation of tetracycline and evaluation of antimicrobial activity. J. Environ. Chem. Eng. 2021, 9, 106476. [Google Scholar] [CrossRef]
- Zhu, W.Y.; Li, Z.; Zhou, Y.; Yan, X.L. Deposition of silver nanoparticles onto two dimensional BiOCl nanodiscs for enhanced visible light photocatalytic and biocidal activities. RSC Adv. 2016, 6, 64911–64920. [Google Scholar] [CrossRef]
- Chang, Y.; Cheng, Y.; Feng, Y.; Li, K.; Jian, H.; Zhang, H. Upshift of the d Band Center toward the Fermi Level for Promoting Silver Ion Release, Bacteria Inactivation, and Wound Healing of Alloy Silver Nanoparticles. ACS Appl. Mater. Interfaces 2019, 11, 12224–12231. [Google Scholar] [CrossRef]
- Padervand, M.; Jalilian, E.; Majdani, R.; Goshadezehn, M. BiOCl/AgCl-BiOI/AgI quaternary nanocomposite for the efficient photodegradation of organic wastewaters and pathogenic bacteria under visible light. J. Water Process. Eng. 2019, 29, 100789. [Google Scholar] [CrossRef]
- Gupta, G.; Kansal, S.K. Novel 3-D flower like Bi3O4Cl/BiOCl p-n heterojunction nanocomposite for the degradation of levofloxacin drug in aqueous phase. Process. Saf. Environ. Prot. 2019, 128, 342–352. [Google Scholar] [CrossRef]
- Wu, D.; Ye, L.Q.; Wang, W.; Yip, H.Y.; Wong, P.K. Surfactant-free Self-Templating Construction of BiOCl/BiO1.84H0.08 Nanodisc Heterostructures with Visible-Light-Driven Antibacterial Activity. Chemistryselect 2016, 1, 5049–5056. [Google Scholar] [CrossRef]
- Liu, M.Y.; Zhu, H.Q.; Zhu, N.L.; Yu, Q.L. Vacancy engineering of BiOCl microspheres for efficient removal of multidrug-resistant bacteria and antibiotic-resistant genes in wastewater. Chem. Eng. J. 2021, 426, 130710. [Google Scholar] [CrossRef]
- Chen, R.; Wei, L.; Yan, Y.; Chen, G.; Yang, X.; Liu, Y.; Zhang, M.; Liu, X.; Cheng, Y.; Sun, J.; et al. Bismuth telluride functionalized bismuth oxychloride used for enhancing antibacterial activity and wound healing efficacy with sunlight irradiation. Biomater. Sci. 2022, 10, 467–473. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Guan, S.; Wang, L.; Xu, S.M.; Yang, D.; Waterhouse, G.I.N.; Qu, X.; Zhou, S. Vacancy-enhanced generation of singlet oxygen for photodynamic therapy. Chem. Sci. 2019, 10, 2336–2341. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Cai, D.; Wu, H.; Fu, Y.; Cao, Y.; Zhang, Y.; Wu, D.; Tian, Q.; Yang, S. Functionalized Cu3BiS3 nanoparticles for dual-modal imaging and targeted photothermal/photodynamic therapy. Nanoscale 2018, 10, 4452–4462. [Google Scholar] [CrossRef]
- Xu, Y.; Shi, Z.; Zhang, L.; Brown, E.M.; Wu, A. Layered bismuth oxyhalide nanomaterials for highly efficient tumor photodynamic therapy. Nanoscale 2016, 8, 12715–12722. [Google Scholar] [CrossRef]
- Yang, D.; Yang, G.; Li, J.; Gai, S.; He, F.; Yang, P. NIR-driven water splitting by layered bismuth oxyhalide sheets for effective photodynamic therapy. J. Mater. Chem. B 2017, 5, 4152–4161. [Google Scholar] [CrossRef]
- Li, B.; Cheng, Y.; Zheng, R.; Wu, X.; Qi, F.; Wu, Y.; Hu, Y.; Li, X. Improving the photothermal therapy efficacy and preventing the surface oxidation of bismuth nanoparticles through the formation of a bismuth@bismuth selenide heterostructure. J. Mater. Chem. B 2020, 8, 8803–8808. [Google Scholar] [CrossRef]
- Cheng, Y.; Chang, Y.; Feng, Y.; Jian, H.; Tang, Z.; Zhang, H. Deep-Level Defect Enhanced Photothermal Performance of Bismuth Sulfide-Gold Heterojunction Nanorods for Photothermal Therapy of Cancer Guided by Computed Tomography Imaging. Angew. Chem. Int. Ed. 2018, 57, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Yan, Y.; Zeng, L.; Shi, Z.; Gong, A.; Schaaf, P.; Wang, D.; Zhao, J.; Zou, B.; Yu, H.; et al. A Near Infrared Light Triggered Hydrogenated Black TiO2 for Cancer Photothermal Therapy. Adv. Healthc. Mater. 2015, 4, 1526–1536. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Liu, J.; Guo, L.; Bai, J.; Zhou, M. Oxygen vacancy-enhanced photothermal performance and reactive oxygen species generation for synergistic tumour therapy. Chem. Commun. (Camb.) 2020, 56, 11259–11262. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, H.; Song, C.; Li, Z.; Wang, Z.; Xu, H.; Yu, W.; Peng, C.; Li, M.; Chen, Z. Synthesis of Bi2WO6−x nanodots with oxygen vacancies as an all-in-one nanoagent for simultaneous CT/IR imaging and photothermal/photodynamic therapy of tumors. Nanoscale 2019, 11, 15326–15338. [Google Scholar] [CrossRef] [PubMed]
- Bogdan, J.; Plawinska-Czarnak, J.; Zarzynska, J. Nanoparticles of Titanium and Zinc Oxides as Novel Agents in Tumor Treatment: A Review. Nanoscale Res. Lett 2017, 12, 225. [Google Scholar] [CrossRef] [Green Version]
- Yao, M.H.; Ma, M.; Chen, Y.; Jia, X.Q.; Xu, G.; Xu, H.X.; Chen, H.R.; Wu, R. Multifunctional Bi2S3/PLGA nanocapsule for combined HIFU/radiation therapy. Biomaterials 2014, 35, 8197–8205. [Google Scholar] [CrossRef]
- Du, J.; Gu, Z.; Yan, L.; Yong, Y.; Yi, X.; Zhang, X.; Liu, J.; Wu, R.; Ge, C.; Chen, C.; et al. Poly(Vinylpyrollidone)- and Selenocysteine-Modified Bi2Se3 Nanoparticles Enhance Radiotherapy Efficacy in Tumors and Promote Radioprotection in Normal Tissues. Adv. Mater. 2017, 29, 1701268. [Google Scholar] [CrossRef]
- Bogusz, K.; Tehei, M.; Stewart, C.; McDonald, M.; Cardillo, D.; Lerch, M.; Corde, S.; Rosenfeld, A.; Liu, H.K.; Konstantinov, K. Synthesis of potential theranostic system consisting of methotrexate-immobilized (3-aminopropyl)trimethoxysilane coated alpha-Bi2O3 nanoparticles for cancer treatment. RSC Adv. 2014, 4, 24412–24419. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.; Xu, S.; Hu, W.; Xun, X.; Zheng, L.; Su, M. Tumor targeted, stealthy and degradable bismuth nanoparticles for enhanced X-ray radiation therapy of breast cancer. Biomaterials 2018, 154, 24–33. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Du, J.; Song, K.; Liu, J.; Wang, X.; Li, B.; Ouyang, R.; Miao, Y.; Sun, Y.; et al. Biodegradable BiOCl platform for oxidative stress injury-enhanced chemodynamic/radiation therapy of hypoxic tumors. Acta Biomater. 2021, 129, 280–292. [Google Scholar] [CrossRef]
Heterostructures | Types of Heterostructures | Excited Light | Degradation Performances | Ref. |
---|---|---|---|---|
BiOCl{001}-BiOCl{110} | Z-scheme | 150 W Xe lamp without UV cutoff filter | RhB, 50 min, ~100% | [51] |
BiOI{001}-BiOCl{010} | Type II | 300 W metal-halide lamp with a 420 nm cutoff filter | MO, 3 h, 95% | [34] |
BiOCl-BiOBr-Bi24O31Br10 | Type II | 400 W halogen lamp without UV cutoff filter | Levofloxacin, 180 min, 82% Ofloxacin, 180 min, 78.3% Norfloxacin, 180 min, 65.5% Ciprofloxacin, 180 min, 43.4% | [52] |
BiOCl-BiOBr | Type II | Visible light (>420 nm) | MO, 40 min, ~95% Phenol, 4 h, ~100% | [53] |
BiOCl-TiO2 | Type II | 300 W Xe lamp with a 450 nm cutoff filter | Phenol, 6 h, 43% | [18] |
BiOCl-CQDs-ZnIn2S4 | Type II | 300 W Xe lamp with a 420 nm cutoff filter 150 W infrared lamp (<700 nm) | Tetracycline, 60 min, 82.3% Ciprofloxacin, 90 min, ~80% Oxytetracycline, 90 min, ~70% | [17] |
BiOCl-CuO | Type II | 600 W Xe lamp | Bisphenol A, 60 min, 98.42% | [21] |
BiOCl-NaBiO3 | Type II | 500 W Xe lamp | RhB, 60 min, 100% | [54] |
BiOCl-BiPO4 | Type II | 500 W Xe lamp | MO, 14 min, 98% | [55] |
BiOCl-BiVO4 | Type II | 500 W Xe lamp with a 400 nm cutoff filter | MO, 11 h, ~90% | [56] |
BiOCl-PbBiO2Cl | Type I | 150 W Xe arc lamp | Crystal violet, 12 h, 99% | [57] |
BiOCl-C3N4 | Z-scheme | 300 W Xe lamp | Tetracycline, 60 min, 97.1% | [58] |
BiOCl-K+Ca2Nb3O10− | Z-scheme | 250 E Xe lamp | Tetracycline hydrochloride, 150 min, 100% | [20] |
BiOCl-VO-BiPO4 | Z-scheme | 300 W Xe lamp | Carbamazepine, 30 min, 81.7% | [59] |
BiOCl-Au-CdS | Z-scheme | 300 W Xe lamp with an AM 1.5 cutoff filter | MO, 180 min, 100% RhB, 30 min, 100% Phenol, 100 min, 100% Sulfadiazine, 4 h, 100% | [60] |
Substance | BiOCl-Based NMs | Detecting Subject | Detection Range | Detection Limit | Refs. |
---|---|---|---|---|---|
Antibiotics | BiOCl-Bi | ciprofloxacin | 0.16~9.64 μg mL−1 | 0.05 μg mL−1 | [73] |
BiOCl-C3N4 | ciprofloxacin | 0.5~1840 ng mL−1 | 0.2 ng mL−1 | [74] | |
BiOCl-Bi24O31Cl10 | ciprofloxacin | 5.0~1.0 × 104 ng mL−1 | 1.67 ng mL−1 | [75] | |
BiOCl-Ag | chloramphenicol | 0.2~1.0 × 104 pM | 0.08 pM | [76] | |
BiOCl-MnO2 | lincomycin | 1.0 × 10−3~1.0 × 103 nM | 3.33 × 10−4 nM | [78] | |
BiOCl-Au-CdS | kanamycin | 50~5000 fM | 29 fM | [77] | |
Pesticides | BiOCl-Au | 4-chlorophenol | 0.16~20 mg L−1 | 0.05 mg L−1 | [79] |
BiOCl-BiPO4 | 4-chlorophenol | 20~3.38 × 104 ng mL−1 | 6.78 ng mL−1 | [80] | |
BiOCl-GQDs | chlorpyrifos | 0.3~80 ng mL−1 | 0.01 ng mL−1 | [81] | |
BiOCl-TiO2 | chlorpyrifos | 1~12 µM | 0.11 µM | [82] | |
BiOCl0.5Br0.5-C3N4-Au | 2-chloroethyl phosphate | 20~6.3 × 104 nM | 6.9 nM | [83] | |
Antibiotics | BiOCl-graphene | glucose | 0.5~10 mM | 0.22 mM | [84] |
BiOCl-TiO2 | glucose | 0~1300 µM | 5.7 µM | [85] | |
BiOCl | glutathione | 0.01~20 µM | 0.6 µM | [86] | |
BiOCl-BiPO4-CDs | dopamine | 1~1.0 × 104 pM | 0.3 pM | [87] | |
BiOCl-Bi2S3-CdS | alkaline phosphatase | 0.1~4000 U L−1 | 0.06 U L−1 | [88] | |
BiOCl-C3N4 | carcinoembryonic antigen | 0.1~1.0 × 104 pg mL−1 | 0.1 pg mL−1 | [89] | |
BiOCl-CdS | carcinoembryonic antigen | 0.01~40.0 ng mL−1 | 0.002 ng mL−1 | [90] | |
Others | BiOCl-CuO | aflatoxin B1 | 0.5~1.0 × 105 pg mL−1 | 0.07 pg mL−1 | [91] |
BiOCl | Pb ions | 0.2~300 µg L−1 | 33 ng L−1 | [92] | |
BiOCl-CuS-FeN3 | naproxen | 0.2~500 µM | 0.06 µM | [93] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Liu, Y.; Chen, G.; Zhang, M.; Yang, X.; Chen, R.; Cheng, Y. Bismuth Oxychloride Nanomaterials Fighting for Human Health: From Photodegradation to Biomedical Applications. Crystals 2022, 12, 491. https://doi.org/10.3390/cryst12040491
Wang L, Liu Y, Chen G, Zhang M, Yang X, Chen R, Cheng Y. Bismuth Oxychloride Nanomaterials Fighting for Human Health: From Photodegradation to Biomedical Applications. Crystals. 2022; 12(4):491. https://doi.org/10.3390/cryst12040491
Chicago/Turabian StyleWang, Lili, Yang Liu, Guoli Chen, Mengyuan Zhang, Xiaodong Yang, Rui Chen, and Yan Cheng. 2022. "Bismuth Oxychloride Nanomaterials Fighting for Human Health: From Photodegradation to Biomedical Applications" Crystals 12, no. 4: 491. https://doi.org/10.3390/cryst12040491
APA StyleWang, L., Liu, Y., Chen, G., Zhang, M., Yang, X., Chen, R., & Cheng, Y. (2022). Bismuth Oxychloride Nanomaterials Fighting for Human Health: From Photodegradation to Biomedical Applications. Crystals, 12(4), 491. https://doi.org/10.3390/cryst12040491