Dual-Mechanism Absorptive Metasurface with Wideband 20 dB RCS Reduction
Abstract
:1. Introduction
2. Design Principle of Metasurface
3. Results and Discussion
3.1. Unit Cell Design
3.2. Metasurface Design and Simulation
3.3. Metasurface Fabrication and Measurement
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Engheta, N.; Ziolkowski, R.W. Metamaterials: Physics and Engineering Applications; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Holloway, C.L.; Kuester, E.F.; Gordon, J.A.; O’Hara, J.; Booth, J.; Smith, D.R. An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials. IEEE Antennas Propag. Mag. 2012, 54, 10–35. [Google Scholar] [CrossRef]
- Chen, H.T.; Taylor, A.J.; Yu, N. A review of metasurfaces: Physics and applications. Rep. Prog. Phys. 2016, 79, 076401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, H.L.; Cheung, S.W.; Chung, K.L.; Yuk, T.I. Linear-tocircular polarization conversion using metasurface. IEEE Trans. Antennas Propag. 2013, 61, 4615–4623. [Google Scholar] [CrossRef] [Green Version]
- Grady, N.K.; Heyes, J.E.; Chowdhury, D.R.; Zeng, Y.; Reiten, M.T.; Azad, A.K.; Taylor, A.J.; Dalvit, D.A.; Chen, H.T. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 2013, 340, 1304–1307. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Zhou, Y.; Gao, J.; Cao, X.; Yang, H.; Li, S.; Xu, L.; Lan, J.; Jidi, L. Ultra-wideband polarization conversion metasurface and its application cases for antenna radiation enhancement and scattering suppression. Sci. Rep. 2017, 7, 16137. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.X.; Tang, S.; Wang, G.M.; Cai, T.; Huang, W.; He, Q.; Sun, S.; Zhou, L. Multifunctional microstrip array combining a linear polarizer and focusing metasurface. IEEE Trans. Antennas Propag. 2016, 64, 3676–3682. [Google Scholar] [CrossRef]
- Li, H.; Wang, G.; Xu, H.X.; Cai, T.; Liang, J. X-band phasegradient metasurface for high-gain lens antenna application. IEEE Trans. Antennas Propag. 2015, 63, 5144–5149. [Google Scholar] [CrossRef]
- Huang, L.; Chen, X.; Mühlenbernd, H.; Zhang, H.; Chen, S.; Bai, B.; Tan, Q.; Jin, G.; Cheah, K.W.; Qiu, C.-W.; et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 2013, 4, 2808. [Google Scholar] [CrossRef] [Green Version]
- Ye, W.; Zeuner, F.; Li, X.; Reineke, B.; He, S.; Qiu, C.-W.; Liu, J.; Wang, Y.; Zhang, S.; Zentgraf, T. Spin and wavelength multiplexed nonlinear metasurface holography. Nat. Commun. 2016, 7, 11930. [Google Scholar] [CrossRef]
- Paquay, M.; Iriarte, J.C.; Ederra, I.; Gonzalo, R.; de Maagt, P. Thin AMC structure for radar cross-section reduction. IEEE Trans. Antennas Propag. 2007, 55, 3630–3638. [Google Scholar] [CrossRef]
- Galarregui, J.C.I.; Pereda, A.T.; De Falcon, J.L.M.; Ederra, I.; Gonzalo, R.; De Maagt, P. Broadband radar cross-section reduction using AMC technology. IEEE Trans. Antennas Propag. 2013, 61, 6136–6143. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, J.; Qu, S.; Wang, J.; Chen, H.; Xu, Z.; Zhang, A. Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces. Appl. Phys. Lett. 2014, 104, 221110. [Google Scholar] [CrossRef]
- Sang, D.; Chen, Q.; Ding, L.; Guo, M.; Fu, Y. Design of checkerboard AMC structure for wideband RCS reduction. IEEE Trans. Antennas Propag. 2019, 67, 2604–2612. [Google Scholar] [CrossRef]
- Pang, Y.; Li, Y.; Qu, B.; Yan, M.; Wang, J.; Qu, S.; Xu, Z. Wideband RCS reduction metasurface with a transmission window. IEEE Trans. Antennas Propag. 2020, 68, 7079–7087. [Google Scholar] [CrossRef]
- Yuan, F.; Xu, H.X.; Jia, X.Q.; Wang, G.M.; Fu, Y.Q. RCS reduction based on concave/convex-chessboard random parabolic-phased metasurface. IEEE Trans. Antennas Propag. 2020, 68, 2463–2468. [Google Scholar] [CrossRef]
- Xu, H.X.; Ma, S.; Ling, X.; Zhang, X.K.; Tang, S.; Cai, T.; Sun, S.; He, Q.; Zhou, L. Deterministic approach to achieve broadband polarization-independent diffusive scatterings based on metasurfaces. ACS Photonics 2018, 5, 1691–1702. [Google Scholar] [CrossRef]
- Al-Nuaimi, M.K.T.; Hong, W.; Whittow, W.G. Aperiodic sunflower-like metasurface for diffusive scattering and RCS reduction. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1048–1052. [Google Scholar] [CrossRef] [Green Version]
- Yuan, F.; Wang, G.M.; Xu, H.X.; Cai, T.; Zou, X.J.; Pang, Z.H. Broadband RCS reduction based on spiral-coded metasurface. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 3188–3191. [Google Scholar] [CrossRef]
- Yoo, M.; Lim, S. Polarization-independent and ultrawideband metamaterial absorber using a hexagonal artificial impedance surface and a resistance-capacitor layer. IEEE Trans. Antennas Propag. 2014, 62, 2652–2658. [Google Scholar]
- Shen, Y.; Pang, Y.; Wang, J.; Ma, H.; Pei, Z.; Qu, S. Origamiinspired metamaterial absorbers for improving the larger-incident angle absorption. J. Phys. D Appl. Phys. 2015, 48, 445008. [Google Scholar] [CrossRef]
- Begaud, X.; Lepage, A.C.; Varault, S.; Soiron, M.; Barka, A. Ultrawideband and wide-angle microwave metamaterial absorber. Materials 2018, 11, 2045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Lan, C.; Bi, K.; Li, B.; Zhao, Q.; Zhou, J. Dual band metamaterial perfect absorber based on mie resonances. Appl. Phys. Lett. 2016, 109, 062902. [Google Scholar] [CrossRef]
- Shi, T.; Jin, L.; Han, L.; Tang, M.C.; Xu, H.X.; Qiu, C.W. Dispersion-engineered, broadband, wide-angle, polarization-independent microwave t metamaterial absorber. IEEE Trans. Antennas Propag. 2021, 69, 229–238. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Y.; Gong, S.; Wang, J.; Jiang, Y. Wideband RCS reduction of a slot array antenna using a hybrid metasurface. IEEE Trans. Antennas Propag. 2020, 68, 3644–3652. [Google Scholar]
- Song, J.; Wang, L.; Li, M.; Dong, J. A dual-band metamaterial absorber with adjacent absorption peaks. J. Phys. D Appl. Phys. 2018, 51, 385105. [Google Scholar] [CrossRef]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402-1–207402-4. [Google Scholar] [CrossRef]
- Kowerdziej, R.; Jaroszewicz, L.R. Tunable dual-band liquid crystal based near-infrared perfect metamaterial absorber with high-loss metal. Liq. Cryst. 2019, 46, 1568–1573. [Google Scholar] [CrossRef]
- Marin, P.; Cortina, D.; Hernando, A. Electromagnetic wave absorbing material based on magnetic microwires. IEEE Trans. Magn. 2008, 44, 3934–3937. [Google Scholar] [CrossRef]
- Costa, F.; Monorchio, A.; Manara, G. Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces. IEEE Trans. Antennas Propag. 2010, 58, 1551–1558. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, Y.; Wang, G.; Liang, J.; Zhang, Q. Dual-band low-scattering metasurface based on combination of diffusion and absorption. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2606–2609. [Google Scholar] [CrossRef]
- Zhou, L.; Shen, Z. Absorptive coding metasurface with ultrawideband backscattering reduction. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1201–1205. [Google Scholar] [CrossRef]
- Ji, C.; Huang, C.; Zhang, X.; Yang, J.; Song, J.; Luo, X. Broadband low-scattering metasurface using a combination of phase cancellation and absorption mechanisms. Opt. Express 2019, 27, 23368–23377. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhang, Y.; Wu, T.; Cao, J.; Chen, Z.; Guan, J. Broadband radar cross section reduction by in-plane integration of scattering metasurfaces and magnetic absorbing materials. Results Phys. 2019, 12, 1964–1970. [Google Scholar] [CrossRef]
- Zhuang, Y.; Wang, G.; Zhang, Q.; Zhou, C. Low-scattering tri-band metasurface using combination of diffusion absorption and cancellation. IEEE Access 2018, 6, 17306–17312. [Google Scholar] [CrossRef]
- Leung, S.; Liang, C.-P.; Tao, X.-F.; Li, F.-F.; Poo, Y.; Wu, R.-X. Broadband radar cross section reduction by an absorptive metasurface based on a magnetic absorbing material. Opt. Express 2021, 29, 33536. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, A.; Kazemzadeh, A. On the physical limit of radar absorbers. In Proceedings of the 2010 URSI International Symposium on Electromagnetic Theory (EMTS), Berlin, Germany, 16–19 August 2010; IEEE: Piscataway, NJ, USA, 2010. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, F.; Chen, Q.; Zheng, Y.; Fu, Y. Dual-Mechanism Absorptive Metasurface with Wideband 20 dB RCS Reduction. Crystals 2022, 12, 493. https://doi.org/10.3390/cryst12040493
Yuan F, Chen Q, Zheng Y, Fu Y. Dual-Mechanism Absorptive Metasurface with Wideband 20 dB RCS Reduction. Crystals. 2022; 12(4):493. https://doi.org/10.3390/cryst12040493
Chicago/Turabian StyleYuan, Fang, Qiang Chen, Yuejun Zheng, and Yunqi Fu. 2022. "Dual-Mechanism Absorptive Metasurface with Wideband 20 dB RCS Reduction" Crystals 12, no. 4: 493. https://doi.org/10.3390/cryst12040493
APA StyleYuan, F., Chen, Q., Zheng, Y., & Fu, Y. (2022). Dual-Mechanism Absorptive Metasurface with Wideband 20 dB RCS Reduction. Crystals, 12(4), 493. https://doi.org/10.3390/cryst12040493