Investigation into Micro-Polishing Photonic Crystal Fibers for Surface Plasmon Resonance Sensing
Abstract
:1. Introduction
2. Geometric Structure and Numerical Modelling
3. Sensing Characteristics and Performance Analysis
3.1. Transmission Characteristics of the PCF Sensors
3.2. Optimization of Air Holes’ Diameter
3.3. Optimization of ITO Thickness and Core-to-Surface Interval
3.4. Effects of Analyte RI Variation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pollet, J.; Delport, F.; Janssen, K.P.F.; Jans, K.; Maes, G.; Pfeiffer, H.; Wevers, M.; Lammertyn, J. Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions. Biosens. Bioelectron. 2009, 25, 864–869. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Fang, M. Nanomaterials in pollution trace detection and environmental improvement. Nano Today 2010, 5, 128–142. [Google Scholar]
- Yanase, Y.; Hiragun, T.; Yanase, T.; Kawaguchi, T.; Ishii, K.; Hide, M. Application of SPR Imaging Sensor for Detection of Individual Living Cell Reactions and Clinical Diagnosis of Type I Allergy. Allergol. Int. 2013, 62, 163–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, S.; Baillargeat, D.; Ho, H.-P.; Yong, K.-T. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev. 2014, 43, 3426–3452. [Google Scholar] [CrossRef]
- Lu, J.; Van Stappen, T.; Spasic, D.; Delport, F.; Vermeire, S.; Gils, A.; Lammertyn, J. Fiber optic-SPR platform for fast and sensitive infliximab detection in serum of inflammatory bowel disease patients. Biosens. Bioelectron. 2016, 79, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Jha, R.; Badenes, G. Effect of fiber core dopant concentration on the performance of surface plasmon resonance-based fiber optic sensor. Sens. Actuator A Phys. 2009, 150, 212–217. [Google Scholar] [CrossRef]
- Pollet, J.; Delport, F.; Janssen, K.P.F.; Tran, D.T.; Wouters, J.; Verbiest, T.; Lammertyn, J. Fast and accurate peanut allergen detection with nanobead enhanced optical fiber SPR biosensor. Talanta 2011, 83, 1436–1441. [Google Scholar] [CrossRef]
- Birks, T.A.; Knight, J.C.; Russell, P.S. Endlessly single-mode photonic crystal fiber. Opt. Lett. 1997, 22, 961–963. [Google Scholar] [CrossRef]
- Mafi, A.; Koch, K.W. Photonic Crystal Fibers with a General Bravais Lattice. J. Lightwave Technol. 2009, 27, 4711–4716. [Google Scholar]
- Guo, Y.; Li, J.; Wang, X.; Zhang, S.; Liu, Y.; Wang, J.; Wang, S.; Meng, X.; Hao, R.; Li, S. Highly sensitive sensor based on D-shaped microstructure fiber with hollow core. Opt. Laser Technol. 2020, 123, 105922. [Google Scholar] [CrossRef]
- Hassani, A.; Skorobogatiy, M. Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics. Opt. Express 2006, 14, 11616–11621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, S.; Nakkeeran, K.; Abobaker, A.M.; Aphale, S.S.; Babu, P.R.; Senthilnathan, K. Design and Analysis of Surface-Plasmon-Resonance-Based Photonic Quasi-Crystal Fiber Biosensor for High-Refractive-Index Liquid Analytes. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 6900309. [Google Scholar] [CrossRef] [Green Version]
- Ruan, Y.; Schartner, E.P.; Ebendorff-Heidepriem, H.; Hoffmann, P.; Monro, T.M. Detection of quantum-dot labelled proteins using soft glass microstructured optical fibers. Opt. Express 2007, 15, 17819–17826. [Google Scholar] [CrossRef] [Green Version]
- Haider, F.; Aoni, R.A.; Ahmed, R.; Islam, M.S.; Miroshnichenko, A.E. Propagation Controlled Photonic Crystal Fiber-Based Plasmonic Sensor via Scaled-Down Approach. IEEE Sens. J. 2019, 19, 962–969. [Google Scholar] [CrossRef]
- Liu, Q.; Yan, B.; Liu, J. U-shaped photonic quasi-crystal fiber sensor with high sensitivity based on surface plasmon resonance. Appl. Phys. Express 2019, 12, 052014. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, Y.; Wang, Y.; Yang, F.; Hu, S.; Chen, Y.; Zhu, W.; Qiu, W.; Guan, H.; Lu, H.; et al. Side-polished few-mode fiber based surface plasmon resonance biosensor. Opt. Express 2019, 27, 11348–11360. [Google Scholar] [CrossRef]
- Chen, X.; Xia, L.; Li, C. Surface Plasmon Resonance Sensor Based on a Novel D-Shaped Photonic Crystal Fiber for Low Refractive Index Detection. IEEE Photonics J. 2018, 10, 1–9. [Google Scholar] [CrossRef]
- Yang, Z.; Xia, L.; Li, C.; Chen, X.; Liu, D. A surface plasmon resonance sensor based on concave-shaped photonic crystal fiber for low refractive index detection. Opt. Commun. 2019, 430, 195–203. [Google Scholar] [CrossRef]
- Liu, Q.; Sun, J.; Sun, Y.; Ren, Z.; Liu, C.; Lv, J.; Wang, F.; Wang, L.; Liu, W.; Sun, T.; et al. Surface plasmon resonance sensor based on photonic crystal fiber with indium tin oxide film. Opt. Mater. 2020, 102, 109800. [Google Scholar] [CrossRef]
- Kim, S.; Kee, C.-S.; Lee, J. Novel optical properties of six-fold symmetric photonic quasicrystal fibers. Opt. Express 2007, 15, 13221–13226. [Google Scholar] [CrossRef]
- Liu, Q.; Sun, J.; Sun, Y.; Liu, W.; Wang, F.; Yang, L.; Liu, C.; Liu, Q.; Li, Q.; Ren, Z.; et al. Surface plasmon resonance sensor based on eccentric core photonic quasi-crystal fiber with indium tin oxide. Appl. Opt. 2019, 58, 6848–6853. [Google Scholar] [CrossRef]
- Liu, Y.; Li, S.; Chen, H.; Li, J.; Zhang, W.; Wang, M. Surface Plasmon Resonance Induced High Sensitivity Temperature and Refractive Index Sensor Based on Evanescent Field Enhanced Photonic Crystal Fiber. J. Lightwave Technol. 2020, 38, 919–928. [Google Scholar] [CrossRef]
- Russell, P. Photonic crystal fibers. Science 2003, 299, 358–362. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Li, K.; Cui, Y.; Wu, Z.; Shum, P.P.; Auguste, J.-L.; Dinh, X.Q.; Humbert, G.; Wei, L. Ultra-sensitive chemical and biological analysis via specialty fibers with built-in microstructured optofluidic channels. Lab Chip 2018, 18, 655–661. [Google Scholar] [CrossRef]
- Bhattacharyya, D.; Senecal, K.; Marek, P.; Senecal, A.; Gleason, K.K. High Surface Area Flexible Chemiresistive Biosensor by Oxidative Chemical Vapor Deposition. Adv. Funct. Mater. 2011, 21, 4328–4337. [Google Scholar] [CrossRef]
- Wong, W.C.; Chan, C.C.; Boo, J.L.; Teo, Z.Y.; Tou, Z.Q.; Yang, H.B.; Li, C.M.; Leong, K.C. Photonic Crystal Fiber Surface Plasmon Resonance Biosensor Based on Protein G Immobilization. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 4602107. [Google Scholar] [CrossRef]
- Liu, C.; Su, W.; Liu, Q.; Lu, X.; Wang, F.; Sun, T.; Chu, P.K. Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing. Opt. Express 2018, 26, 9039–9049. [Google Scholar] [CrossRef]
- Zhang, Z.; Shi, Y.; Bian, B.; Lu, J. Dependence of leaky mode coupling on loss in photonic crystal fiber with hybrid cladding. Opt. Express 2008, 16, 1915–1922. [Google Scholar] [CrossRef]
- Liu, C.; Yang, L.; Lu, X.; Liu, Q.; Wang, F.; Lv, J.; Sun, T.; Mu, H.; Chu, P.K. Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers. Opt. Express 2017, 25, 14227–14237. [Google Scholar] [CrossRef]
- Wang, F.; Liu, C.; Sun, Z.; Sun, T.; Liu, B.; Chu, P.K. A Highly Sensitive SPR Sensors Based on Two Parallel PCFs for Low Refractive Index Detection. IEEE Photonics J. 2018, 10, 1–10. [Google Scholar] [CrossRef]
- Liu, C.; Wang, J.; Wang, F.; Su, W.; Yang, L.; Lv, J.; Fu, J.; Li, X.; Liu, Q.; Sun, T.; et al. Surface plasmon resonance (SPR) infrared sensor based on D-shape photonic crystal fibers with ITO coatings. Opt. Commun. 2020, 464, 125496. [Google Scholar] [CrossRef]
Analyte RI. | Resonance Wavelength (nm) | Peak Loss (dB/m) | Wavelength Sensitivity (nm/RIU) |
---|---|---|---|
1.32 | 1481 | 18,564 | 2500 |
1.33 | 1506 | 22,283 | 2800 |
1.34 | 1534 | 27,350 | 3300 |
1.35 | 1567 | 34,677 | 3900 |
1.36 | 1606 | 46,446 | 4700 |
1.37 | 1653 | 72,614 | 7100 |
1.38 | 1724 | 85,819 | 11600 |
1.39 | 1840 | 55,957 | - |
Structure | RI Range | Max Sensitivity (nm/RIU) | Max Resolution | Year | Ref. |
---|---|---|---|---|---|
D-shaped | 1.23–1.29 | 5500 | 7.69 × 10−6 | 2017 | [29] |
Dual-shaped | 1.27–1.32 | 13,500 | 7.41 × 10−6 | 2018 | [18] |
D-shaped | 1.20–1.29 | 11,055 | 9.05 × 10−6 | 2019 | [17] |
D-shaped | 1.19–1.29 | 10,700 | - | 2018 | [30] |
D-shaped | 1.22–1.33 | 15,000 | 6.67 × 10−6 | 2020 | [31] |
D-shaped | 1.32–1.39 | 11,600 | - | 2022 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Chen, J.; Hou, S.; Lei, J. Investigation into Micro-Polishing Photonic Crystal Fibers for Surface Plasmon Resonance Sensing. Crystals 2022, 12, 1106. https://doi.org/10.3390/cryst12081106
Liu Q, Chen J, Hou S, Lei J. Investigation into Micro-Polishing Photonic Crystal Fibers for Surface Plasmon Resonance Sensing. Crystals. 2022; 12(8):1106. https://doi.org/10.3390/cryst12081106
Chicago/Turabian StyleLiu, Qingmin, Junpeng Chen, Shanglin Hou, and Jingli Lei. 2022. "Investigation into Micro-Polishing Photonic Crystal Fibers for Surface Plasmon Resonance Sensing" Crystals 12, no. 8: 1106. https://doi.org/10.3390/cryst12081106
APA StyleLiu, Q., Chen, J., Hou, S., & Lei, J. (2022). Investigation into Micro-Polishing Photonic Crystal Fibers for Surface Plasmon Resonance Sensing. Crystals, 12(8), 1106. https://doi.org/10.3390/cryst12081106