Pulsed Sputtering Preparation of InGaN Multi-Color Cascaded LED Stacks for Large-Area Monolithic Integration of RGB LED Pixels
Abstract
:1. Introduction
2. The Epitaxial Growth of the Tunneling Junction Connected InGaN LED Stack via PSD
3. Monolithic Integration of Dual-Color LEDs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, T.; Sher, C.-W.; Lin, Y.; Lee, C.-F.; Liang, S.; Lu, Y.; Chen, S.-W.H.; Guo, W.; Kuo, H.C.; Chen, Z. Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology. Appl. Sci. 2018, 8, 1557. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Ma, J.; Su, P.; Zhang, L.; Xia, B. Full-Color Realization of Micro-LED Displays. Nanomaterials 2020, 10, 2482. [Google Scholar] [CrossRef] [PubMed]
- Ding, K.; Avrutin, V.; Izyumskaya, N.; Özgür, Ü.; Morkoç, H. Micro-LEDs, a Manufacturability Perspective. Appl. Sci. 2019, 9, 1206. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Peng, D.; Lau, K.M.; Liu, Z. Fully-integrated active matrix programmable UV and blue micro LED display system-on-panel (SoP). J. SID 2019, 25, 240–248. [Google Scholar] [CrossRef]
- Choi, M.; Jang, B.; Lee, W.; Lee, S.; Kim, T.W.; Lee, H.-J.; Kim, J.-H.; Ahn, J.-H. Stretchable Active Matrix Inorganic Light-Emitting Diode Display Enabled by Overlay-Aligned Roll-Transfer Printing. Adv. Funct. Mater. 2017, 27, 1606005. [Google Scholar] [CrossRef]
- Geum, D.-M.; Kim, S.K.; Kang, C.-M.; Moon, S.-H.; Kyhm, J.; Han, J.; Lee, D.-S.; Kim, S. Strategy toward the fabrication of ultrahigh-resolution micro-LED displays by bonding-interface-engineered vertical stacking and surface passivation. Nanoscale 2019, 11, 23139–23148. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.H.; Nam, S.; Oh, N.; Cho, S.-Y.; Yu, K.J.; Lee, C.H.; Zhang, J.; Deshpande, K.; Trefonas, P.; Kim, J.-H.; et al. Multilayer Transfer Printing for Pixelated, Multicolor Quantum Dot Light-Emitting Diodes. ACS Nano 2016, 10, 4920–4925. [Google Scholar] [CrossRef] [PubMed]
- Robin, Y.; Hemeret, F.; D’Inca, G.; Pristovsek, M.; Trassoudaine, A.; Amano, H. Monolithic integration of tricolor micro-LEDs and color mixing investigation by analog and digital dimming. Jpn. J. Appl. Phys. 2019, 58, SCCC06. [Google Scholar] [CrossRef]
- Ichikawa, S.; Shiomi, K.; Morikawa, T.; Timmerman, D.; Sasaki, Y.; Tatebayashi, J.; Fujiwara, Y. Eu-doped GaN and InGaN monolithically stacked full-color LEDs with a wide color gamut. Appl. Phys. Express 2021, 14, 031008. [Google Scholar] [CrossRef]
- Li, P.; Li, H.; Yao, Y.; Zhang, H.; Lynsky, C.; Qwah, K.S.; Speck, J.S.; Nakamura, S.; DenBaars, S.P. Demonstration of high efficiency cascaded blue and green micro-light-emitting diodes with independent junction control. Appl. Phys. Lett. 2021, 118, 261104. [Google Scholar] [CrossRef]
- Sato, K.; Ohta, J.; Inoue, S.; Kobayashi, A.; Fujioka, H. Room-Temperature Epitaxial Growth of High Quality AlN on SiC by Pulsed Sputtering Deposition. Appl. Phys. Express 2009, 2, 011003. [Google Scholar] [CrossRef]
- Nakamura, E.; Ueno, K.; Ohta, J.; Fujioka, H.; Oshima, M. Dramatic reduction in process temperature of InGaN-based light-emitting diodes by pulsed sputtering growth technique. Appl. Phys. Lett. 2014, 104, 051121. [Google Scholar] [CrossRef]
- Arakawa, Y.; Ueno, K.; Kobayashi, A.; Ohta, J.; Fujioka, H. High hole mobility p-type GaN with low residual hydrogen concentration prepared by pulsed sputtering. APL Mater. 2016, 4, 086103. [Google Scholar] [CrossRef] [Green Version]
- Shon, J.W.; Ohta, J.; Ueno, K.; Kobayashi, A.; Fujioka, H. Fabrication of full-color InGaN-based light-emitting diodes on amorphous substrates by pulsed sputtering. Sci. Rep. 2014, 4, 5325. [Google Scholar] [CrossRef] [Green Version]
- Ohba, Y.; Hatano, A. A study on strong memory effects for Mg doping in GaN metalorganic chemical vapor deposition. J. Cryst. Growth 1994, 145, 214–218. [Google Scholar] [CrossRef]
- Xing, H.; Green, D.S.; Yu, H.; Mates, T.; Kozodoy, P.; Keller, S.; DenBaars, S.P.; Mishra, U.K. Memory Effect and Redistribution of Mg into Sequentially Regrown GaN Layer by Metalorganic Chemical Vapor Deposition. Jpn. J. Appl. Phys. 2003, 42, 50–53. [Google Scholar] [CrossRef]
- Ueno, K.; Fudetani, T.; Arakawa, Y.; Kobayashi, A.; Ohta, J.; Fujioka, H. Electron transport properties of degenerate n-type GaN prepared by pulsed sputtering. APL Mater. 2017, 5, 126102. [Google Scholar] [CrossRef]
- Fudetani, T.; Ueno, K.; Kobayashi, A.; Fujioka, H. Wide range doping controllability of p-type GaN films prepared via pulsed sputtering. Appl. Phys. Lett. 2019, 114, 032102. [Google Scholar] [CrossRef]
- Fudetani, T.; Ueno, K.; Kobayashi, A.; Fujioka, H. Heavily Si-doped pulsed sputtering deposited GaN for tunneling junction contacts in UV-A light emitting diodes. Appl. Phys. Lett. 2021, 118, 072101. [Google Scholar] [CrossRef]
- Morikawa, S.; Ueno, K.; Kobayashi, A.; Fujioka, H. Pulsed sputtering growth of heavily Si-doped GaN (2021) for tunneling junction contacts on semipolar InGaN (2021) LEDs. Appl. Phys. Express 2021, 14, 051011. [Google Scholar] [CrossRef]
- Kumabe, T.; Ando, Y.; Watanabe, H.; Deki, M.; Tanaka, A.; Nitta, S.; Honda, Y.; Amano, H. Etching-induced damage in heavily Mg-doped p-type GaN and its suppression by low-bias-power inductively coupled plasma-reactive ion etching. Jpn. J. Appl. Phys. 2021, 60, SBBD03. [Google Scholar] [CrossRef]
- Kent, D.G.; Lee, K.P.; Zhang, A.P.; Luo, B.; Overberg, M.E.; Abernathy, C.R.; Ren, F.; Mackenzie, K.D.; Pearton, S.J.; Nakagawa, Y. Electrical effects of N2 plasma exposure on dry-etch damage in p- and n-GaN Schottky diodes. Solid-State Electron. 2001, 45, 1837–1842. [Google Scholar] [CrossRef]
- Moon, Y.-T.; Kim, D.-J.; Park, J.-S.; Oh, J.-T.; Lee, J.-M.; Park, S.-J. Recovery of dry-etch-induced surface damage on Mg-doped GaN by NH3 ambient thermal annealing. J. Vac. Sci. Technol. B 2004, 22, 489. [Google Scholar] [CrossRef]
- Lee, J.-M.; Lee, K.-S.; Park, S.-J. Removal of dry etch damage in p-type GaN by wet etching of sacrificial oxide layer. J. Vac. Sci. Technol. B 2004, 22, 479. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morikawa, S.; Ueno, K.; Kobayashi, A.; Fujioka, H. Pulsed Sputtering Preparation of InGaN Multi-Color Cascaded LED Stacks for Large-Area Monolithic Integration of RGB LED Pixels. Crystals 2022, 12, 499. https://doi.org/10.3390/cryst12040499
Morikawa S, Ueno K, Kobayashi A, Fujioka H. Pulsed Sputtering Preparation of InGaN Multi-Color Cascaded LED Stacks for Large-Area Monolithic Integration of RGB LED Pixels. Crystals. 2022; 12(4):499. https://doi.org/10.3390/cryst12040499
Chicago/Turabian StyleMorikawa, Soichiro, Kohei Ueno, Atsushi Kobayashi, and Hiroshi Fujioka. 2022. "Pulsed Sputtering Preparation of InGaN Multi-Color Cascaded LED Stacks for Large-Area Monolithic Integration of RGB LED Pixels" Crystals 12, no. 4: 499. https://doi.org/10.3390/cryst12040499
APA StyleMorikawa, S., Ueno, K., Kobayashi, A., & Fujioka, H. (2022). Pulsed Sputtering Preparation of InGaN Multi-Color Cascaded LED Stacks for Large-Area Monolithic Integration of RGB LED Pixels. Crystals, 12(4), 499. https://doi.org/10.3390/cryst12040499