Effect of Nd and Mn Co-Doping on Dielectric, Ferroelectric and Photovoltaic Properties of BiFeO3
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nakamura, Y.; Nakashima, S.; Ricinschi, D.; Okuyama, M. The Insertion Effect of Bi-excess Layers on Stoichiometric BiFeO3 Thin Films Prepared by Chemical Solution Deposition. Funct. Mater. Lett. 2008, 1, 19–24. [Google Scholar] [CrossRef]
- Neaton, J.B.; Ederer, C.; Waghmare, U.V.; Spaldin, N.A.; Rabe, K.M. First-principles study of spontaneous polarization in multiferroic BiFeO3. Phys. Rev. B 2005, 71, 014113. [Google Scholar] [CrossRef] [Green Version]
- Martin, L.W.; Chu, Y.H.; Ramesh, R. Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films. Mater. Sci. Eng. R Rep. 2010, 68, 89–133. [Google Scholar] [CrossRef] [Green Version]
- Korkmaz, S.; Kariper, I.A. Pyroelectric nanogenerators (PyNGs) in converting thermal energy into electrical energy: Fundamentals and current status. Nano Energy 2021, 84, 105888. [Google Scholar] [CrossRef]
- Korkmaz, S.; Kariper, I.A. Production and applications of flexible/wearable triboelectric nanogenerator (TENGS). Synth. Met. 2021, 273, 116692. [Google Scholar] [CrossRef]
- Korkmaz, S.; Kariper, I.A. Aerogel based nanogenerators: Production methods, characterizations and applications. Int. J. Energy Res. 2020, 44, 11088–11110. [Google Scholar] [CrossRef]
- Korkmaz, S.; Kariper, I.A. BaTiO3-based nanogenerators: Fundamentals and current status. J. Electroceram. 2021. [Google Scholar] [CrossRef]
- Singh, S.K.; Ishiwara, H.; Maruyama, K. Enhanced polarization and reduced leakage current in BiFeO3 thin films fabricated by chemical solution deposition. J. Appl. Phys. 2006, 100, 064102. [Google Scholar] [CrossRef]
- Kim, J.W.; Raghavan, C.M.; Kim, Y.-J.; Oak, J.-J.; Kim, H.J.; Kim, W.-J.; Kim, M.H.; Song, T.K.; Kim, S.S. Electrical properties of chemical solution deposited (Bi0.9RE0.1)(Fe0.975Cu0.025)O3-delta (RE = Ho and Tb) thin films. Ceram. Int. 2013, 39, S189–S193. [Google Scholar] [CrossRef]
- Sharma, H.B.; Singh, N.B.; Devi, K.N.; Lee, J.H.; Singh, S.B. Structural and optical properties of manganese substituted nanocrystalline bismuth ferrite thin films by sol-gel process. J. Alloys Compd. 2014, 583, 106–110. [Google Scholar] [CrossRef]
- Tang, X.; Dai, J.; Zhu, X.; Sun, Y. In situ magnetic annealing effects on multiferroic Mn-doped BiFeO3 thin films. J. Alloys Compd. 2013, 552, 186–189. [Google Scholar] [CrossRef]
- Jin, L.; Li, F.; Zhang, S. Decoding the Fingerprint of Ferroelectric Loops: Comprehension of the Material Properties and Structures. J. Am. Ceram. Soc. 2014, 97, 1–27. [Google Scholar] [CrossRef]
- Shi, X.X.; Liu, X.Q.; Chen, X.M. Structure evolution and piezoelectric properties across the morphotropic phase boundary of Sm-substituted BiFeO3 ceramics. J. Appl. Phys. 2016, 119, 064104. [Google Scholar] [CrossRef]
- Noguchi, Y.; Matsuo, H.; Kitanaka, Y.; Miyayama, M. Ferroelectrics with a controlled oxygen-vacancy distribution by design. Sci. Rep. 2019, 9, 4225. [Google Scholar] [CrossRef]
- Zhang, D.H.; Shi, P.; Wu, X.Q.; Ren, W. Structural and electrical properties of sol-gel-derived Al-doped bismuth ferrite thin films. Ceram. Int. 2013, 39, S461–S464. [Google Scholar] [CrossRef]
- Xue, X.; Tan, G.; Liu, W.; Hao, H. Study on pure and Nd-doped BiFeO3 thin films prepared by chemical solution deposition method. J. Alloys Compd. 2014, 604, 57–65. [Google Scholar] [CrossRef]
- Xue, X.; Tan, G.Q. Effect of bivalent Co ion doping on electric properties of Bi0.85Nd0.15FeO3 thin film. J. Alloys Compd. 2013, 575, 90–95. [Google Scholar] [CrossRef]
- Maleki, H.; Zare, S.; Fathi, R. Effect of Nd Substitution on Properties of Multiferroic Bismuth Ferrite Synthesized by Sol-Gel Auto-combustion Method. J. Supercond. Nov. Magn. 2018, 31, 2539–2545. [Google Scholar] [CrossRef]
- Kawae, T.; Tsuda, H.; Morimoto, A. Reduced leakage current and ferroelectric properties in Nd and Mn codoped BiFeO3 thin films. Appl. Phys. Express 2008, 1, 051601. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.; Sharma, Y.; Hong, S.; Katiyar, R.S. Modulation of oxygen vacancies assisted ferroelectric and photovoltaic properties of (Nd, V) co-doped BiFeO3 thin films. J. Phys. D Appl. Phys. 2018, 51, 275303. [Google Scholar] [CrossRef]
- Kawae, T.; Tsuda, H.; Naganuma, H.; Yamada, S.; Kumeda, M.; Okamura, S.; Morimoto, A. Composition dependence in BiFeO3 film capacitor with suppressed leakage current by Nd and Mn cosubstitution and their ferroelectric properties. Jpn. J. Appl. Phys. 2008, 47, 7586–7589. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Chaudhuri, A.R.; Kim, Y.H.; Hesse, D.; Alexe, M. Role of domain walls in the abnormal photovoltaic effect in BiFeO3. Nat. Commun. 2013, 4, 2835. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.G.; Fan, Z.; Xiao, D.Q.; Zhu, J.G.; Wang, J. Multiferroic bismuth ferrite-based materials for multifunctional applications: Ceramic bulks, thin films and nanostructures. Prog. Mater. Sci. 2016, 84, 335–402. [Google Scholar] [CrossRef] [Green Version]
- Seidel, J.; Fu, D.Y.; Yang, S.Y.; Alarcon-Llado, E.; Wu, J.Q.; Ramesh, R.; Ager, J.W. Efficient Photovoltaic Current Generation at Ferroelectric Domain Walls. Phys. Rev. Lett. 2011, 107, 126805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakashima, S.; Higuchi, T.; Yasui, A.; Kinoshita, T.; Shimizu, M.; Fujisawa, H. Enhancement of photovoltage by electronic structure evolution in multiferroic Mn-doped BiFeO3 thin films. Sci. Rep. 2020, 10, 15108. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, H.; Noguchi, Y.; Miyayama, M. Gap-state engineering of visible-light-active ferroelectrics for photovoltaic applications. Nat. Commun. 2017, 8, 207. [Google Scholar] [CrossRef] [Green Version]
- Nechache, R.; Harnagea, C.; Li, S.; Cardenas, L.; Huang, W.; Chakrabartty, J.; Rosei, F. Bandgap tuning of multiferroic oxide solar cells. Nat. Photonics 2015, 9, 61–67. [Google Scholar] [CrossRef]
- Gupta, S.; Medwal, R.; Limbu, T.B.; Katiyar, R.K.; Pavunny, S.P.; Tomar, M.; Morell, G.; Gupta, V.; Katiyar, R.S. Graphene/semiconductor silicon modified BiFeO3/indium tin oxide ferroelectric photovoltaic device for transparent self-powered windows. Appl. Phys. Lett. 2015, 107, 062902. [Google Scholar] [CrossRef] [Green Version]
- Meng, Q.; Yao, K.; Liang, Y.C. Photovoltaic mechanisms in ferroelectric thin films with the effects of the electrodes and interfaces. Appl. Phys. Lett. 2009, 95, 233. [Google Scholar] [CrossRef]
- Qin, M.; Yao, K.; Liang, Y.C. Photovoltaic characteristics in polycrystalline and epitaxial (Pb0.97La0.03)(Zr0.52Ti0.48)O3 ferroelectric thin films sandwiched between different top and bottom electrodes. J. Appl. Phys. 2009, 105, 061624. [Google Scholar] [CrossRef]
- Qin, M.; Yao, K.; Liang, Y.C. High efficient photovoltaics in nanoscaled ferroelectric thin films. Appl. Phys. Lett. 2008, 93, 122904. [Google Scholar] [CrossRef]
- Shi, T.J.; Wang, J.H.; Yan, W.; Shao, X.H.; Hou, Z.L. Enhanced photovoltaic property based on reduced leakage current and band gap in Nd-doped BiFeO3 films. Mater. Res. Express 2019, 6, 086426. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Ma, P.P.; Shi, T.J.; Shao, X.H. Nd-Cr co-doped BiFeO3 thin films for photovoltaic devices with enhanced photovoltaic performance. Thin Solid Film. 2020, 698, 137852. [Google Scholar] [CrossRef]
- Tan, K.H.; Chen, Y.W.; Van, C.N.; Wang, H.L.; Chen, J.W.; Lim, F.S.; Chew, K.H.; Zhan, Q.; Wu, C.L.; Chai, S.P.; et al. Energy Band Gap Modulation in Nd-Doped BiFeO3/SrRuO3 Heteroepitaxy for Visible Light Photoelectrochemical Activity. Acs Appl. Mater. Interfaces 2019, 11, 1655–1664. [Google Scholar] [CrossRef]
- Biswas, P.P.; Pal, S.; Subramanian, V.; Murugavel, P. Large photovoltaic response in rare-earth doped BiFeO3 polycrystalline thin films near morphotropic phase boundary composition. Appl. Phys. Lett. 2019, 114, 173901. [Google Scholar] [CrossRef]
- Wu, J.G.; Wang, J.; Xiao, D.Q.; Zhu, J.G. Mn4+:BiFeO3/Zn2+:BiFeO3 bilayered thin films of (111) orientation. Appl. Surf. Sci. 2011, 257, 7226–7230. [Google Scholar] [CrossRef]
- Qi, X.D.; Wei, M.; Lin, Y.; Jia, Q.X.; Zhi, D.; Dho, J.; Blamire, M.G.; MacManus-Driscoll, J.L. High-resolution X-ray diffraction and transmission electron microscopy of multiferroic BiFeO3 films. Appl. Phys. Lett. 2005, 86, 071913. [Google Scholar] [CrossRef]
- Li, X.A.; Wang, X.W.; Li, Y.T.; Mao, W.W.; Li, P.; Yang, T.; Yang, J.P. Structural, morphological and multiferroic properties of Pr and Co co-substituted BiFeO3 nanoparticles. Mater. Lett. 2013, 90, 152–155. [Google Scholar] [CrossRef]
- Singh, M.K.; Jang, H.M.; Ryu, S.; Jo, M.H. Polarized Raman scattering of multiferroic BiFeO3 epitaxial films with rhombohedral R3c symmetry. Appl. Phys. Lett. 2006, 88, 042907. [Google Scholar] [CrossRef]
- Martín-Carrón, L.; de Andrés, A.; Martínez-Lope, M.J.; Casais, M.T.; Alonso, J.A. Raman phonons as a probe of disorder, fluctuations, and local structure in doped and undoped orthorhombic and rhombohedral manganites. Phys. Rev. B 2002, 66, 174303. [Google Scholar] [CrossRef] [Green Version]
- Lobo, R.P.S.M.; Moreira, R.L.; Lebeugle, D.; Colson, D. Infrared phonon dynamics of a multiferroic BiFeO3 single crystal. Phys. Rev. B 2007, 76, 172105. [Google Scholar] [CrossRef] [Green Version]
- Pattanayak, S.; Choudhary, R.N.P. Synthesis, electrical and magnetic characteristics of Nd-modified BiFeO3. Ceram. Int. 2015, 41, 9403–9410. [Google Scholar] [CrossRef]
- Gu, Y.H.; Wang, Y.; Chen, F.; Chan, H.L.W.; Chen, W.P. Nonstoichiometric BiFe0.9Ti0.05O3 multiferroic ceramics with ultrahigh electrical resistivity. J. Appl. Phys. 2010, 108, 094112. [Google Scholar] [CrossRef] [Green Version]
- Dong, G.H.; Tan, G.Q.; Luo, Y.Y.; Liu, W.L.; Ren, H.J.; Xia, A. Investigation of Tb-doping on structural transition and multiferroic properties of BiFeO3 thin films. Ceram. Int. 2014, 40, 6413–6419. [Google Scholar] [CrossRef]
- Choudhary, R.N.P.; Perez, K.; Bhattacharya, P.; Katiyar, R.S. Structural and dielectric properties of mechanochemically synthesized BiFeO3-Ba(Zr0.6Ti0.4)O3 solid solutions. Mater. Chem. Phys. 2007, 105, 286–292. [Google Scholar] [CrossRef]
- Kumar, M.; Yadav, K.L.; Varma, G.D. Large magnetization and weak polarization in sol-gel derived BiFeO3 ceramics. Mater. Lett. 2008, 62, 1159–1161. [Google Scholar] [CrossRef]
- Arlt, G.; Hennings, D.; de With, G. Dielectric properties of fine-grained barium titanate ceramics. J. Appl. Phys. 1985, 58, 1619–1625. [Google Scholar] [CrossRef] [Green Version]
- Saxena, P.; Kumar, A.; Sharma, P.; Varshney, D. Improved dielectric and ferroelectric properties of dual-site substituted rhombohedral structured BiFeO3 multiferroics. J. Alloys Compd. 2016, 682, 418–423. [Google Scholar] [CrossRef]
- Gao, Z.; Luo, Y.; Lyu, S.; Cheng, Y.; Zheng, Y.; Zhong, Q.; Zhang, W.; Lyu, H. Identification of Ferroelectricity in a Capacitor With Ultra-Thin (1.5-nm) Hf0.5Zr0.5O2 Film. IEEE Electr. Device Lett. 2021, 42, 1303–1306. [Google Scholar] [CrossRef]
- Tsymbal, E.Y.; Kohlstedt, H. Applied physics—Tunneling across a ferroelectric. Science 2006, 313, 181–183. [Google Scholar] [CrossRef]
- Wen, Z.; Li, C.; Wu, D.; Li, A.; Ming, N. Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. Nat. Mater. 2013, 12, 617–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabelac, J.; Ghosh, S.; Dobal, P.; Katiyar, R. rf oxygen plasma assisted molecular beam epitaxy growth of BiFeO3 thin films on SrTiO3 (001). J. Vac. Sci. Technol. B 2007, 25, 1049–1052. [Google Scholar] [CrossRef]
- Singh, S.K.; Kim, Y.K.; Funakubo, H.; Ishiwara, H. Epitaxial BiFeO3 thin films fabricated by chemical solution deposition. Appl. Phys. Lett. 2006, 88, 162904. [Google Scholar] [CrossRef]
- Bark, C.W.; Sharma, P.; Wang, Y.; Baek, S.H.; Lee, S.; Ryu, S.; Folkman, C.M.; Paudel, T.R.; Kumar, A.; Kalinin, S.V.; et al. Switchable Induced Polarization in LaAlO3/SrTiO3 Heterostructures. Nano Lett. 2012, 12, 1765–1771. [Google Scholar] [CrossRef]
- Strelcov, E.; Kim, Y.; Yang, J.C.; Chu, Y.H.; Yu, P.; Lu, X.; Jesse, S.; Kalinin, S.V. Role of measurement voltage on hysteresis loop shape in Piezoresponse Force Microscopy. Appl. Phys. Lett. 2012, 101, 192902. [Google Scholar] [CrossRef]
- Yuan, G.L.; Or, S.W.; Liu, J.M.; Liu, Z.G. Structural transformation and ferroelectromagnetic behavior in single-phase Bi1−xNdxFeO3 multiferroic ceramics. Appl. Phys. Lett. 2006, 89, 052905. [Google Scholar] [CrossRef] [Green Version]
- Chu, Y.H.; Zhan, Q.; Yang, C.H.; Cruz, M.P.; Martin, L.W.; Zhao, T.; Yu, P.; Ramesh, R.; Joseph, P.T.; Lin, I.N.; et al. Low voltage performance of epitaxial BiFeO3 films on Si substrates through lanthanum substitution. Appl. Phys. Lett. 2008, 92, 102909. [Google Scholar] [CrossRef]
- Cai, W.; Fu, C.L.; Gao, R.L.; Jiang, W.H.; Deng, X.L.; Chen, G. Photovoltaic enhancement based on improvement of ferroelectric property and band gap in Ti-doped bismuth ferrite thin films. J. Alloys Compd. 2014, 617, 240–246. [Google Scholar] [CrossRef]
- Wang, C.Y.; Liu, X.Y.; Sheng, S.; Zhou, Y.; Liu, H.R.; Sun, Y.X. Photovoltaic mechanism in Na-substituted BiFeO3 films. J. Phys. D Appl. Phys. 2014, 47, 355104. [Google Scholar] [CrossRef]
- Guo, Y.P.; Guo, B.; Dong, W.; Li, H.; Liu, H.Z. Evidence for oxygen vacancy or ferroelectric polarization induced switchable diode and photovoltaic effects in BiFeO3 based thin films. Nanotechnology 2013, 24, 275201. [Google Scholar] [CrossRef]
- Fan, Z.; Ji, W.; Li, T.; Xiao, J.X.; Yang, P.; Ong, K.P.; Zeng, K.Y.; Yao, K.; Wang, J. Enhanced photovoltaic effects and switchable conduction behavior in BiFe0.6Sc0.4O3 thin films. Acta Mater. 2015, 88, 83–90. [Google Scholar] [CrossRef]
- Gupta, S.; Tomar, M.; Gupta, V. Ferroelectric photovoltaic response to structural transformations in doped BiFeO3 derivative thin films. Mater. Des. 2016, 105, 296–300. [Google Scholar] [CrossRef]
- Peng, Z.W.; Wang, Y.L.; Liu, B.T. Enhanced open circuit voltage in photovoltaic effect of polycrystalline La and Ni co-doped BiFeO3 film. Funct. Mater. Lett. 2015, 8, 1550002. [Google Scholar] [CrossRef]
- Ukai, Y.; Yamazaki, S.; Kawae, T.; Morimoto, A. Polarization-Induced Photovoltaic Effects in Nd-Doped BiFeO3 Ferroelectric Thin Films. Jpn. J. Appl. Phys. 2012, 51, 09LE10. [Google Scholar] [CrossRef] [Green Version]
Samples | Light Intensity (mW cm−2) | JSC (mA cm−2) | VOC (V) | Film Thickness (nm) | References |
---|---|---|---|---|---|
Bi0.84Nd0.16Fe0.99Mn0.01O3 | 160 | 1.758 | 0.135 | 40 | This work |
Bi0.9Nd0.1FeO3 | 100 | 0.048 | 0.7 | 700 | [32] |
Bi0.95Nd0.05FeO3 | 100 | 0.035 | 0.2 | 150–190 | [34] |
BiFe0.92Ti0.08O3 | 100 | 0.020 | 0.52 | - | [58] |
Bi0.8Na0.2FeO3 | 100 | 0.001 | 0.625 | - | [59] |
Bi0.9Sr0.1FeO3−δ | 100 | 0.036 | 0.42 | 300 | [60] |
BiFe0.6Sc0.4O3 | 22.3 | 0.0065 | 0.6 | 200 | [61] |
Bi0.88Ce0.12Fe0.9Mn0.1O3 | 160 | 0.036 | 0.25 | 350 | [62] |
Bi0.95Nd0.05Fe0.97V0.03O3 | 100 | 0.0985 | 0.65 | - | [20] |
Bi0.975La0.025Fe0.975Ni0.025O3 | 5 | 0.00135 | 0.67 | 600 | [63] |
BiNd0.03FeO3 | 1000–3000 | 12.1 | 0.81 | 170 | [64] |
BiFe0.95Mn0.05O3 | 2500 | 0.015 | 3.1 | 300 | [26] |
Bi2FeCrO6 | 100 | 20.6 | 0.84 | 100 | [27] |
BiFe0.95Si0.05O3 | 100 | 23.8 | 0.45 | 650 | [28] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Song, Y.; Jia, C.; Gao, Z.; Zhang, W. Effect of Nd and Mn Co-Doping on Dielectric, Ferroelectric and Photovoltaic Properties of BiFeO3. Crystals 2022, 12, 500. https://doi.org/10.3390/cryst12040500
Wu Q, Song Y, Jia C, Gao Z, Zhang W. Effect of Nd and Mn Co-Doping on Dielectric, Ferroelectric and Photovoltaic Properties of BiFeO3. Crystals. 2022; 12(4):500. https://doi.org/10.3390/cryst12040500
Chicago/Turabian StyleWu, Qiyuan, Yanling Song, Caihong Jia, Zhaomeng Gao, and Weifeng Zhang. 2022. "Effect of Nd and Mn Co-Doping on Dielectric, Ferroelectric and Photovoltaic Properties of BiFeO3" Crystals 12, no. 4: 500. https://doi.org/10.3390/cryst12040500
APA StyleWu, Q., Song, Y., Jia, C., Gao, Z., & Zhang, W. (2022). Effect of Nd and Mn Co-Doping on Dielectric, Ferroelectric and Photovoltaic Properties of BiFeO3. Crystals, 12(4), 500. https://doi.org/10.3390/cryst12040500