2D Layer Structure in Two New Cu(II) Crystals: Structural Evolvement and Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and General Methods
2.2. Synthesis of the Complexes
2.3. Crystal Structure Determination
3. Results and Discussion
3.1. Structure Analysis
3.2. X-ray Diffraction Patterns
3.3. Thermal Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yin, Z.; Zhou, Y.-L.; Zeng, M.-H.; Kurmoo, M. The Concept of Mixed Organic Ligands in Metal-Organic Frameworks: Design, Tuning and Functions. Dalton. Trans. 2015, 44, 5258–5275. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Astruc, D. State of the Art and Prospects in Metal–Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. Chem. Rev. 2020, 120, 1438–1511. [Google Scholar] [CrossRef] [PubMed]
- Yuan, G.; Tan, L.; Wang, P.; Wang, Y.; Wang, C.; Yan, H.; Wang, Y.-Y. MOF-COF Composite Photocatalysts: Design, Synthesis, and Mechanism. Cryst. Growth Des. 2022, 22, 893–908. [Google Scholar] [CrossRef]
- Shu, Y.; Ye, Q.; Dai, T.; Xu, Q.; Hu, X. Encapsulation of Luminescent Guests to Construct Luminescent Metal–Organic Frameworks for Chemical Sensing. ACS Sens. 2021, 6, 641–658. [Google Scholar] [CrossRef]
- Hassanein, K.; Cappuccino, C.; Amo-Ochoa, P.; López-Molina, J.; Maini, L.C.; Bandini, E.; Ventura, B. Multifunctional coordination polymers based on copper(I) and mercaptonicotinic ligands: Synthesis, and structural, optical and electrical characterization. Dalton. Trans. 2020, 30, 10545–10553. [Google Scholar] [CrossRef]
- Rogovoy, M.I.; Berezin, A.S.; Samsonenko, D.G.; Artem’ev, A.V. Silver(I)-organic frameworks showing remarkable thermo-, solvato- and vapochromic phosphorescence as well as reversible solvent-driven 3D-to-0D transformations. Inorg. Chem. 2021, 9, 6680–6687. [Google Scholar] [CrossRef]
- Artem’ev, A.V.; Davydova, M.P.; Hei, X.-Z.; Rakhmanova, M.I.; Samsonenko, D.G.; Bagryanskaya, I.Y.; Brylev, K.A.; Fedin, V.P.; Chen, J.-S.; Cotlet, M.; et al. Family of robust and strongly luminescent CuI-Based hybrid networks made of ionic and dative bonds. Chem. Mater. 2020, 24, 10708–10718. [Google Scholar] [CrossRef]
- Troyano, J.; Zapata, E.; Perles, J.; Amo-Ochoa, P.; Fernandez-Moreira, V.; Martínez, J.I.; Zamora, F.; Delgado, S. Multifunctional copper(I) coordination polymers with aromatic mono- and ditopic thioamides. Inorg. Chem. 2019, 5, 3290–3301. [Google Scholar] [CrossRef] [Green Version]
- Qian, Q.; Asinger, P.A.; Lee, M.J.; Han, G.; Rodriguez, K.M.; Lin, S.; Benedetti, F.M.; Wu, A.X.; Chi, W.S.; Smith, Z.P. MOF-Based Membranes for Gas Separations. Chem. Rev. 2020, 120, 8161–8266. [Google Scholar]
- Zeng, M.-H.; Yin, Z.; Tan, Y.-X.; Zhang, W.-X.; He, Y.-P.; Kurmoo, M. Nanoporous Cobalt(II) MOF Exhibiting Four Magnetic Ground States and Changes in Gas Sorption upon Post-Synthetic Modification. J. Am. Chem. Soc. 2014, 136, 4680–4688. [Google Scholar] [CrossRef]
- Horcajada, P.; Gref, R.; Baati, T.; Allan, P.K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R.E.; Serre, C. Metal–Organic Frameworks in Biomedicine. Chem. Rev. 2012, 112, 1232–1268. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Fan, R.-Q.; Wang, P.; Wang, X.-M.; Gao, S.; Dua, X.; Yang, Y.-L.; Luan, T.-Z. Copper(I)-iodide based coordination polymers: Bifunctional properties related to thermochromism and PMMA-Doped polymer film materials. J. Mater. Chem. C 2015, 24, 6249–6259. [Google Scholar] [CrossRef]
- Chakraborty, G.; Park, I.-H.; Medishetty, R.; Vittal, J.J. Two-Dimensional Metal-Organic Framework Materials: Synthesis, Structures, Properties and Applications. Chem. Rev. 2021, 121, 3751–3891. [Google Scholar] [CrossRef] [PubMed]
- Rodenas, T.; Luz, I.; Prieto, G.; Seoane, B.; Miro, H.; Corma, A.; Kapteijn, F.; Llabrés i Xamena, F.X.; Gascon, J. Metal–organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 2015, 14, 48–55. [Google Scholar] [CrossRef]
- Peng, Y.; Li, Y.; Ban, Y.; Jin, H.; Jiao, W.; Liu, X.; Yang, W. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 2014, 346, 1356–1359. [Google Scholar] [CrossRef]
- Duan, J.; Li, Y.; Pan, Y.; Behera, N.; Jin, W. Metal-organic framework nanosheets: An emerging family of multifunctional 2D materials. Coordin. Chem. Rev. 2019, 395, 25–45. [Google Scholar] [CrossRef]
- Wang, H.-H.; Liu, Q.-Y.; Li, L.; Krishna, R.; Wang, Y.-L.; Peng, X.-W.; He, C.-T.; Lin, R.-B.; Chen, B. Nickel-4′-(3,5-dicarboxyphenyl)-2,2′,6′,2″-terpyridine Framework: Efficient Separation of Ethylene from Acetylene/Ethylene Mixtures with a High Productivity. Inorg. Chem. 2018, 57, 9489–9494. [Google Scholar] [CrossRef]
- Kang, X.-M.; Wang, W.-M.; Yao, L.-H.; Ren, H.-X.; Zhao, B. Solvent-dependent variations of both structure and catalytic performance in three manganese coordination polymers. Dalton. Trans. 2018, 47, 6986–6994. [Google Scholar] [CrossRef]
- Kang, X.-M.; Yao, L.-H.; Jiao, Z.-H.; Zhao, B. Two Stable Heterometal-MOFs as Highly Efficient and Recyclable Catalysts in the CO2 Coupling Reaction with Aziridines. Chem. Asian J. 2019, 14, 3668–3674. [Google Scholar] [CrossRef]
- Mao, H.-J.; Chen, Q.-X.; Han, B. Two Metal—Organic Coordination Polymers Based on Polypyridyl Ligands: Crystal Structures and Inhibition of Human Spinal Tumour Cells. Aust. J. Chem. 2018, 71, 902–906. [Google Scholar] [CrossRef]
- Liu, S.-L.; Chen, Q.-W.; Zhang, Z.-W.; Chen, Q.; Wei, L.-Q.; Lin, N. Efficient heterogeneous catalyst of Fe(II)-based coordination complexes for Friedel-Crafts alkylation reaction. J. Solid. State. Chem. 2022, 310, 123045. [Google Scholar] [CrossRef]
- Bai, N.-N.; Hou, L.; Gao, R.-C.; Liang, J.-Y.; Yang, F.; Wang, Y.-Y. Five 1D to 3D Zn(II)/Mn(II)-CPs based on dicarboxyphenyl-terpyridine ligand: Stepwise adsorptivity and magnetic properties. Cryst. Eng. Comm. 2017, 19, 4789–4796. [Google Scholar] [CrossRef]
- Massouda, S.S.; Louk, F.R.; David, R.N.; Dartez, M.J.; Nguyn, Q.L.; Labry, N.J.; Fischer, R.C.; Mautner, F.A. Five-coordinate metal(II) complexes based pyrazolyl ligands. Polyhedron 2015, 90, 258–265. [Google Scholar] [CrossRef]
- Almeida, K.J.d.; Murugan, N.A.; Rinkevicius, Z.; Hugosson, H.W.; Vahtras, O.; Ågren, H.; Cesar, A. Conformations, structural transitions and visible near-infrared absorption spectra of four-, five- and six-coordinated Cu(II) aqua complexes. Phys. Chem. Chem. Phys. 2009, 11, 508–519. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. SADABS. Program for Empirical Absorption-Correction of Area Detector Data; University of Goöttingen: Goöttingen, Germany, 1996. [Google Scholar]
- Sheldrick, G.M. SHELXL 2014. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 14, 339–341. [Google Scholar] [CrossRef]
- Tiwari, R.K.; Kumar, J.; Behera, J.N. H-bond supported coordination polymers of transition metal sulfites with different dimensionalities. RSC Adv. 2015, 5, 78389–78395. [Google Scholar] [CrossRef]
- Mishra, B.K.; Sathyamurthy, N. π−π Interaction in Pyridine. J. Phys. Chem. A 2005, 109, 6–8. [Google Scholar] [CrossRef]
Compound | 1 | 2 |
---|---|---|
Empirical formula | C23H15CuN3O5 | C27H16CuN3O6 |
Formula weight | 476.92 | 541.97 |
Temperature/K | 293 | 293 |
Crystal system | monoclinic | triclinic |
Space group | P21/n | P |
a/Å | 12.3459(3) | 8.68340(10) |
b/Å | 11.0867(3) | 11.25970(10) |
c/Å | 14.8560(4) | 11.57420(10) |
α/° | 90 | 85.1240(10) |
β/° | 101.181(2) | 88.0210(10) |
γ/° | 90 | 85.7880(10) |
Volume/Å3 | 1994.83(8) | 1124.042(19) |
Z | 4 | 2 |
ρcalc g/cm3 | 1.588 | 1.601 |
μ/mm−1 | 1.138 | 1.824 |
F(000) | 972.0 | 552.0 |
Radiation | MoKα (λ = 0.71073) | CuKα (λ = 1.54184) |
2θ range for data collection/° | 3.934 to 59.824 | 7.67 to 147.946 |
Index ranges | −16 ≤ h ≤ 16, −14 ≤ k ≤ 15, −20 ≤ l ≤ 20 | −10 ≤ h ≤ 10, −13 ≤ k ≤ 14, −14 ≤ l ≤ 13 |
Reflections collected | 28,754 | 23,945 |
Independent reflections | 5115 [Rint = 0.0398, Rsigma = 0.0294] | 4345 [Rint = 0.0223, Rsigma = 0.0143] |
Data/restraints/parameters | 5115/0/292 | 4345/0/335 |
Goodness-of-fit on F2 | 1.078 | 1.072 |
Final R indexes [I ≥ 2σ (I)] | R1 = 0.0321, wR2 = 0.0834 | R1 = 0.0277, wR2 = 0.0789 |
Final R indexes [all data] | R1 = 0.0416, wR2 = 0.0871 | R1 = 0.0289, wR2 = 0.0800 |
Largest diff. peak/hole/e Å−3 | 0.33/−0.38 | 0.25/−0.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, J.-J.; Cao, X.-X.; Chen, Q.-W.; Qin, Y.; Zhang, Z.-W.; Wei, L.-Q.; Chen, Q. 2D Layer Structure in Two New Cu(II) Crystals: Structural Evolvement and Properties. Crystals 2022, 12, 585. https://doi.org/10.3390/cryst12050585
Luo J-J, Cao X-X, Chen Q-W, Qin Y, Zhang Z-W, Wei L-Q, Chen Q. 2D Layer Structure in Two New Cu(II) Crystals: Structural Evolvement and Properties. Crystals. 2022; 12(5):585. https://doi.org/10.3390/cryst12050585
Chicago/Turabian StyleLuo, Jia-Jing, Xiang-Xin Cao, Qi-Wei Chen, Ying Qin, Zhen-Wei Zhang, Lian-Qiang Wei, and Qing Chen. 2022. "2D Layer Structure in Two New Cu(II) Crystals: Structural Evolvement and Properties" Crystals 12, no. 5: 585. https://doi.org/10.3390/cryst12050585
APA StyleLuo, J. -J., Cao, X. -X., Chen, Q. -W., Qin, Y., Zhang, Z. -W., Wei, L. -Q., & Chen, Q. (2022). 2D Layer Structure in Two New Cu(II) Crystals: Structural Evolvement and Properties. Crystals, 12(5), 585. https://doi.org/10.3390/cryst12050585