Interlayer Coupling and Pressure Engineering in Bilayer MoS2
Abstract
:1. Introduction
2. Experimental Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mak, K.F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T.F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Splendiani, A.; Sun, L.; Zhang, Y.B.; Li, T.S.; Kim, J.; Chim, C.Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501. [Google Scholar] [CrossRef]
- Zeng, H.L.; Dai, J.F.; Yao, W.; Xiao, D.; Cui, X.D. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 2012, 7, 490–493. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, S.; Zheng, W.; Zheng, B.; Pan, A. Interlayer exciton formation, relaxation, and transport in TMD van der Waals heterostructures. Light Sci. Appl. 2021, 10, 1–29. [Google Scholar] [CrossRef]
- Fu, L.; Wan, Y.; Tang, N.; Ding, Y.; Gao, J.; Yu, J.; Guan, H.; Zhang, K.; Wang, W.; Zhang, C.; et al. K-Λ crossover transition in the conduction band of monolayer MoS2 under hydrostatic pressure. Sci. Adv. 2017, 3, e1700162. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Fu, S.; Ding, J.; Liu, M.; Bian, A.; Hong, F.; Sun, J.; Zhang, X.; Yu, X.; He, D. Robust Interlayer Exciton in WS2/MoSe2 van der Waals Heterostructure under High Pressure. Nano Lett. 2021, 21, 8035–8042. [Google Scholar] [CrossRef]
- Xia, J.; Yan, J.X.; Wang, Z.H.; He, Y.M.; Gong, Y.J.; Chen, W.Q.; Sum, T.C.; Liu, Z.; Ajayan, P.M.; Shen, Z.X. Strong coupling and pressure engineering in WSe2–MoSe2 heterobilayers. Nat. Phys. 2021, 17, 92–98. [Google Scholar] [CrossRef]
- Gerber, I.C.; Courtade, E.; Shree, S.; Robert, C.; Taniguchi, T.; Watanabe, K.; Balocchi, A.; Renucci, P.; Lagarde, D.; Marie, X.; et al. Interlayer excitons in bilayer MoS2 with strong oscillator strength up to room temperature. Phys. Rev. B 2019, 99, 035443. [Google Scholar] [CrossRef] [Green Version]
- Horng, J.; Stroucken, T.; Zhang, L.; Paik, E.Y.; Deng, H.; Koch, S.W. Observation of interlayer excitons in MoSe2 single crystals. Phys. Rev. B 2018, 97, 241404. [Google Scholar] [CrossRef] [Green Version]
- Paradisanos, I.; Shree, S.; George, A.; Leisgang, N.; Robert, C.; Watanabe, K.; Taniguchi, T.; Warburton, R.J.; Turchanin, A.; Marie, X.; et al. Controlling interlayer excitons in MoS2 layers grown by chemical vapor deposition. Nat. Commun. 2020, 11, 1–7. [Google Scholar] [CrossRef]
- Zhang, C.; Chuu, C.; Ren, X.; Li, M.; Li, L.; Jin, C.; Chou, M.; Shih, C. Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv. 2017, 3, e1601459. [Google Scholar] [CrossRef] [Green Version]
- Leisgang, N.; Shree, S.; Paradisanos, I.; Sponfeldner, L.; Robert, C.; Lagarde, D.; Balocchi, A.; Watanabe, K.; Taniguchi, T.; Marie, X.; et al. Giant Stark splitting of an exciton in bilayer MoS2. Nat. Nanotechnol. 2020, 15, 901–907. [Google Scholar] [CrossRef]
- Mao, H.K.; Xu, J.; Bell, P.M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J. Geophys. Res. 1986, 91, 4673. [Google Scholar] [CrossRef]
- Placidi, M.; Dimitrievska, M.; Izquierdo-Roca, V.; Fontané, X.; Castellanos-Gomez, A.; Pérez-Tomás, A.; Mestres, N.; Espindola-Rodriguez, M.; López-Marino, S.; Neuschitzer, M.; et al. Multiwavelength excitation Raman scattering analysis of bulk and two-dimensional MoS2: Vibrational properties of atomically thin MoS2 layers. 2D Mater. 2015, 2, 035006. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Cui, X.; Zhang, J.; Wang, K.; Shen, M.; Zeng, S.; Shadi, A.; Dayeh, S.; Feng, L.; Xiang, B. Lattice strain effects on the optical properties of MoS2 nanosheets. Sci. Rep. 2014, 4, 1–7. [Google Scholar] [CrossRef]
- Dou, X.; Ding, K.; Jiang, D.; Sun, B. Tuning and identification of interband transitions in monolayer and bilayer molybdenum disulfide using hydrostatic pressure. ACS Nano 2014, 8, 7458–7464. [Google Scholar] [CrossRef]
- Fan, X.; Chang, C.-H.; Zheng, W.; Kuo, J.-L.; Singh, D.J. The electronic properties of single-layer and multilayer MoS2 under high pressure. J. Phys. Chem. C 2015, 119, 10189–10196. [Google Scholar] [CrossRef]
- Li, C.; Liu, Y.; Yang, Q.; Zheng, Q.; Yan, Z.; Han, J.; Lin, J.; Wang, S.; Qi, J.; Liu, Y.; et al. Tuning of Optical Behavior in Monolayer and Bilayer Molybdenum Disulfide Using Hydrostatic Pressure. J. Phys. Chem. Lett. 2021, 13, 161–167. [Google Scholar] [CrossRef]
- Cheng, X.; Li, Y.; Shang, J.; Cheng, X.; Li, Y.; Shang, J.; Hu, C.; Ren, Y.; Liu, M.; Qi, Z. Thickness-dependent phase transition and optical behavior of MoS2 films under high pressure. Nano Res. 2018, 11, 855–863. [Google Scholar] [CrossRef]
- Robert, C.; Han, B.; Kapuscinski, P.; Delhomme, A.; Faugeras, C.; Amand, T.; Molas, M.R.; Bartos, M.; Watanabe, K.; Taniguchi, T.; et al. Measurement of the spin-forbidden dark excitons in MoS2 and MoSe2 monolayers. Nat. Commun. 2020, 11, 4037. [Google Scholar] [CrossRef]
- Slobodeniuk, A.O.; Koperski, M.; Molas, M.R.; Kossacki, P.; Nogajewski, K.; Bartos, M.; Watanabe, K.; Taniguchi, T.; Faugeras, C.; Potemski, M. Fine structure of K-excitons in multilayers of transition metal dichalcogenides. 2D Mater. 2019, 6, 025026. [Google Scholar] [CrossRef]
- Niehues, I.; Blob, A.; Stiehm, T.; de Vasconcellos, S.M.; Bratschitsch, R. Interlayer excitons in bilayer MoS2 under uniaxial tensile strain. Nanoscale 2019, 11, 12788–12792. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, W.; Sun, H.; Fan, X.; Jin, M.; Liu, H.; Tang, T.; Xiong, L.; Niu, B.; Li, X.; Wang, G. Interlayer Coupling and Pressure Engineering in Bilayer MoS2. Crystals 2022, 12, 693. https://doi.org/10.3390/cryst12050693
Qiao W, Sun H, Fan X, Jin M, Liu H, Tang T, Xiong L, Niu B, Li X, Wang G. Interlayer Coupling and Pressure Engineering in Bilayer MoS2. Crystals. 2022; 12(5):693. https://doi.org/10.3390/cryst12050693
Chicago/Turabian StyleQiao, Wei, Hao Sun, Xiaoyue Fan, Meiling Jin, Haiyang Liu, Tianhong Tang, Lei Xiong, Binghui Niu, Xiang Li, and Gang Wang. 2022. "Interlayer Coupling and Pressure Engineering in Bilayer MoS2" Crystals 12, no. 5: 693. https://doi.org/10.3390/cryst12050693
APA StyleQiao, W., Sun, H., Fan, X., Jin, M., Liu, H., Tang, T., Xiong, L., Niu, B., Li, X., & Wang, G. (2022). Interlayer Coupling and Pressure Engineering in Bilayer MoS2. Crystals, 12(5), 693. https://doi.org/10.3390/cryst12050693