Structural Defect Impact on Changing Optical Response and Raising Unpredicted Ferromagnetic Behaviour in (111) Preferentially Oriented Nanocrystalline NiO Films
Abstract
:1. Introduction
2. Experimental Details
2.1. Samples Preparation
- − The formation mechanism of nickel oxide:
- − The residual nickel hydroxide obtained via spray process at 460 °C through an acid-base reaction:
- − Nickel hydroxide transformed into oxide NiO:
2.2. Samples Characterization
3. Results and Discussions
3.1. Structural Characterizations
3.1.1. Structural Parameters Determination
3.1.2. Defect Impact on the Change of the Lattice Parameter
3.1.3. Crystallite Formation Proof
3.2. Morphological Investigation
3.3. EDX Analysis
3.4. Dispersion Parameters
3.5. Magnetic Properties
3.6. Electrical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ros, C.; Andreu, T.; David, J.; Arbiol, J.; Morante, J.R. Degradation and regeneration mechanisms of NiO protective layers deposited by ALD on photoanodes. Mater. Chem. A 2019, 7, 21892–21902. [Google Scholar] [CrossRef]
- Othmen, W.B.H.; Hamed, Z.B.; Sieber, B.; Addad, A.; Elhouichet, H.; Boukherroub, R. Structural and optical characterization of p-type highly Fe-doped SnO2 thin films and tunneling transport on SnO2: Fe/p-Si heterojunction. Appl Surf Sci. 2018, 434, 879–890. [Google Scholar] [CrossRef]
- Taeño, M.; Maestre, D.; Cremades, A. An approach to emerging optical and optoelectronic applications based on NiO micro and nanostructures. Nanophotonics 2021, 10, 1785–1799. [Google Scholar] [CrossRef]
- Sharma, R.; Acharya, A.D.; Shrivastava, S.B.; Shripathi, T.; Ganesan, V. Preparation and characterization of transparent NiO thin films deposited by spray pyrolysis technique. Optik 2014, 125, 6751–6756. [Google Scholar] [CrossRef]
- Kim, K.H.; Takahashi, C.; Abe, Y.; Kawamura, M. Effects of Cu doping on nickel oxide thin film prepared by sol–gel solution process. Optik 2014, 125, 2899–2901. [Google Scholar] [CrossRef]
- Girolamo, D.D.; Giacomo, F.D.; Matteocci, F.; Marrani, A.G.; Dini, D.; Abate, A. Progress, highlights and perspectives on NiO in perovskite. Photovoltaics 2020, 11, 7746–7759. [Google Scholar]
- Michalska, M.; Surmiak, M.A.; Maasoumi, F.; Senevirathna, D.C.; Chantler, P.; Li, H.; Li, B.; Zhang, T.; Lin, X.; Deng, H.; et al. Microfluidic Processing of Ligand-Engineered NiO Nanoparticles for Low-Temperature Hole-Transporting Layers in Perovskite Solar Cells. Sol. RRL 2021, 5, 2100342. [Google Scholar] [CrossRef]
- Wilson, R.L.; Simion, C.E.; Stanoiu, A.; Taylor, A.; Guldin, S.; Covington, J.A.; Carmalt, C.J.; Blackman, C.S. Humidity-Tolerant Ultrathin NiO Gas-Sensing Films. ACS Sens. 2020, 5, 1389–1397. [Google Scholar] [CrossRef]
- Mokoena, T.P.; Swart, H.C.; Motaung, D.E. A review on recent progress of p-type nickel oxide based gas sensors: Future perspectives. J. Alloys Compd. 2019, 805, 267–294. [Google Scholar] [CrossRef]
- Luan, C.; Wang, K.; Yu, Q.; Lian, G.; Zhang, L.; Wang, Q.; Cui, D. Improving the gas-sensing performance of SnO2 porous nanosolid sensors by surface modification. Sens. Actuators B 2013, 176, 475. [Google Scholar] [CrossRef]
- Kobayashi, T.; Kumazawa, T.; Kaoa, Z.J.L.; Nakada, T. Cu(In, Ga)Se2 thin film solar cells with a combined ALD-Zn(O, S) buffer and MOCVD-ZnO:B window layers. Sol. Energy Mater. Sol. Cells 2013, 119, 129. [Google Scholar] [CrossRef]
- Shih, W.C.; Wang, M.J.; Lin, I.N. Characteristics of ZnO thin film surface acoustic wave devices fabricated using nanocrystalline diamond film on silicon substrates. Diam. Relat. Mater. 2008, 17, 390. [Google Scholar] [CrossRef]
- Fu, Y.Q.; Luo, J.K.; Du, X.Y.; Flewitt, A.J.; Li, Y.; Markx, G.H.; Walton, A.J.; Milne, W.I. Recent developments on ZnO films for acoustic wave-based bio-sensing and microfluidic applications: A review. Sens. Actuators B 2010, 143, 606. [Google Scholar] [CrossRef]
- Krishnamoorthy, S.; Iliadis, A.A. Properties of high sensitivity ZnO surface acoustic wave sensors on SiO2/(100) Si substrates. Solid-State Electron. 2008, 11, 1710–1716. [Google Scholar] [CrossRef]
- Bonomo, M.; Dini, D.; Decker, F. Electrochemical and Photoelectrochemical Properties of Nickel Oxide (NiO) With Nanostructured Morphology for Photoconversion Applications. Front. Chem. 2018, 6, 601. [Google Scholar] [CrossRef] [PubMed]
- Diao, C.C.; Huang, C.Y.; Yang, C.F.; Wu, C.C. Morphological, Optical, and Electrical Properties of p-Type Nickel Oxide Thin Films by Nonvacuum Deposition. Nanomaterials 2020, 10, 636. [Google Scholar] [CrossRef] [Green Version]
- Li, M.-H.; Yum, J.-H.; Moon, S.-J.; Chen, P. Inorganic p-Type Semiconductors: Their Applications and Progress in Dye-Sensitized Solar Cells and Perovskite Solar Cells. Energies 2016, 9, 331. [Google Scholar] [CrossRef] [Green Version]
- Manojreddy, P.; Itapu, S.; Ravali, J.K.; Sakkarai, S. Tuning the Electrical Parameters of p-NiOx-Based Thin Film Transistors (TFTs) by Pulsed Laser Irradiation. Condens. Matter 2021, 6, 21. [Google Scholar] [CrossRef]
- Reguig, B.A.; Khelil, A.; Cattin, L.; Morsli, M.; Bernède, J.C. Properties of NiO thin films deposited by intermittent spray pyrolysis process. Appl. Surf. Sci. 2007, 253, 4330–4334. [Google Scholar] [CrossRef]
- Hosny, N.M. Synthesis, characterization and optical band gap of NiO nanoparticles derived from anthranilic acid precursors via a thermal decomposition route. Polyhedron 2011, 30, 470–476. [Google Scholar] [CrossRef]
- Meybodi, S.M.; Hosseini, S.A.; Rezaee, M.; Sadrnezhaad, S.K.; Mohammadyani, D. Synthesis of wide band gap nanocrystalline NiO powder via a sonochemical method. Ultrason. Sonochem. 2012, 19, 841–845. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, N.; Kato, H.; Sakisak, Y. Surface metallic nature caused by an in-gap state of reduced NiO: A photoemission study. J. Electron Spectrosc. Relat. Phenom. 2005, 144–147, 873–875. [Google Scholar] [CrossRef]
- Eder, R. Electronic structure of NiO: Antiferromagnetic transition and photoelectron spectra in the ordered phase. Phys. Rev. B 2015, 91, 245146. [Google Scholar] [CrossRef] [Green Version]
- Thota, S.; Shim, J.H.; Seehra, M.S. Size-dependent shifts of the Néel temperature and optical band-gap in NiO nanoparticles. J. Appl. Phys. 2013, 114, 214307. [Google Scholar] [CrossRef]
- Guo, S.; Liu, W.; Liu, X.H.; Gong, W.J.; Feng, J.N.; Zhang, Z.D. Influence of ferromagnetic layer on the exchange coupling of antiferromagnetic NiO-based films. J. Magn. Magn. Mater. 2012, 324, 3933. [Google Scholar] [CrossRef]
- Nkosi, S.S.; Yalisi, B.; Motaung, D.E.; Keartland, J.; Sideras-Haddadb, E.; Forbes, A.; Mwakikung, B.W. Antiferromagnetic–paramagnetic state transition of NiO synthesized by pulsed laser deposition. Appl. Surf. Sci. 2013, 265, 860. [Google Scholar] [CrossRef]
- Mokoena, T.P.; Swart, H.C.; Hillie, K.T.; Tshabalala, Z.P.; Jozela, M.; Tshilongo, J.; Motaung, D.E. Enhanced propanol gas sensing performance of p-type NiO gas sensor induced by exceptionally large surface area and crystallinity. Appl. Surf. Sci. 2022, 571, 151121. [Google Scholar] [CrossRef]
- Kaya, D.; Aydınoğlu, H.S.; Tüzemen, E.S.; Ekicibil, A. Investigation of optical, electronic, and magnetic properties of p-type NiO thin film on different substrates. Thin Solid Films 2021, 732, 138800. [Google Scholar] [CrossRef]
- Pereira, S.; Gonçalves, A.; Correia, N.; Pinto, J.; Pereira, L.; Martins, R.; Fortunato, E. Electrochromic behavior of NiO thin films deposited by e-beam evaporation at room temperature. Sol. Energy Mater Sol. Cells 2014, 120, 109. [Google Scholar] [CrossRef]
- Moulki, H.; Faure, C.; Mihelčič, M.; ŠurcaVuk, A.; Švegl, F.; Orel, B.; Campet, G.; Alfredsson, M.; Chadwick, A.V.; Gianolio, D.; et al. Electrochromic performances of nonstoichiometric NiO thin films. Thin Solid Films 2014, 553, 63. [Google Scholar] [CrossRef]
- Chen, S.C.; Kuo, T.Y.; Lin, Y.C.; Chang, C.L. Preparation and properties of p-type transparent conductive Cu-doped NiO films. Adv. Mater. Res. 2010, 123, 181. [Google Scholar] [CrossRef]
- Korosec, R.C.; Bukovec, P. Sol–gel prepared NiO thin films for electrochromic applications. Acta Chim. Slov. 2006, 53, 136. [Google Scholar]
- Gowthami, V.; Perumal, P.; Sivakumar, R.; Sanjeeviraja, C. Structural and optical studies on nickel oxide thin film prepared by nebulizer spray technique. Phys. B 2014, 452, 1. [Google Scholar] [CrossRef]
- Boukhachem, A.; Boughalmi, R.; Karyaoui, M.; Mhamdi, A.; Chtourou, R.; Boubaker, K.; Amlouk, M. Study of substrate temperature effects on structural, optical, mechanical and opto-thermal properties of NiO sprayed semiconductor thin films. Mater. Sci. Eng. B 2014, 188, 72. [Google Scholar] [CrossRef]
- Puspharajah, P.; Radhakrishna, S.; Arof, A.K. Transparent conducting lithium-doped nickel oxide thin films by spray pyrolysis technique. J. Matcr. Sci. 1997, 32, 3001. [Google Scholar] [CrossRef]
- Nigro, R.L.; Battiato, S.; Greco, G.; Fiorenza, P.; Roccaforte, F.; Malandrino, G. Metal Organic Chemical Vapor Deposition of nickel oxide thin films for wide band gap device technology. Thin Solid Films 2014, 563, 50. [Google Scholar] [CrossRef]
- Mat-Teridi, M.A.; Tahir, A.A.; Senthilarasu, S.; Wijayantha, K.G.U.; Sulaiman, M.Y.; Ahmad-Ludin, N.; Ibrahim, M.A.; Sopian, K. Fabrication of NiO photoelectrodes by aerosol-assisted chemical vapour deposition (AACVD). Phys. Status Solidi-Rapid Res. Lett. 2014, 8, 982. [Google Scholar] [CrossRef]
- Yeh, W.C.; Matsumura, M. Chemical vapor deposition of nickel oxide films from bis-π-cyclopentadienyl-nickel. Jpn. J. Appl. Phys. 1997, 36, 6884. [Google Scholar] [CrossRef]
- Reddy, Y.A.K.; Reddy, A.S.; Reddy, P.S. Effect of oxygen partial pressure on the properties of NiO–Ag composite films grown by DC reactive magnetron sputterin. J. Alloys Compd. 2014, 583, 396. [Google Scholar] [CrossRef]
- Chen, S.C.; Wen, C.K.; Kuo, T.Y.; Peng, W.C.; Lin, H.C. Characterization and properties of NiO films produced by rf magnetron sputtering with oxygen ion source assistance. Thin Solid Films 2014, 572, 51. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, F.; Wei, L.; Li, G.; Zhang, W. Facet-dependent photocatalytic performance of NiO oriented thin films prepared by pulsed laser deposition. Phys. B 2014, 457, 194. [Google Scholar] [CrossRef]
- Chan, I.M.; Hong, F.C. Improved performance of the single-layer and double-layer organic light emitting diodes by nickel oxide coated indium tin oxide anode. Thin Solid Films 2004, 450, 304. [Google Scholar] [CrossRef]
- Hotovy, I.; Huran, J.; Siciliano, P.; Capone, S.; Spiess, L.; Rehacek, V. Enhancement of H 2 sensing properties of NiO-based thin films with a Pt surface modification. Sens Actuator B Chem. 2004, 103, 300. [Google Scholar] [CrossRef]
- Patil, P.S.; Kadam, L.D. Preparation and characterization of spray pyrolyzed nickel oxide (NiO) thin films. Appl. Surf. Sci. 2002, 199, 211–221. [Google Scholar] [CrossRef]
- Udayakumar, R.; Khanaa, V.; Saravanan, T. Synthesis and structural characterization of thin films of SnO 2 prepared by spray pyrolysis technique. Indian J. Sci. Technol. 2013, 6, 4754–4757. [Google Scholar] [CrossRef]
- Ilegbusi, O.J.; Khatami, S.N.; Trakhtenberg, L.I. Spray Pyrolysis deposition of single and mixed oxide thin films. Mater. Sci. Appl. 2017, 8, 153. [Google Scholar] [CrossRef] [Green Version]
- Messing, G.L.; Zhang, S.C.; Jayanthi, G.V. Ceramic powder synthesis by spray pyrolysis. J. Am. Ceram. Soc. 1993, 76, 2707–2726. [Google Scholar] [CrossRef]
- Verma, V.; Katiyar, M. Effect of the deposition parameters on the structural and magnetic properties of pulsed laser ablated NiO thin films. Thin Solid Films 2013, 527, 369. [Google Scholar] [CrossRef]
- Turgut, G.; Sonmez, E.; Duman, S. Determination of certain sol-gel growth parameters of nickel oxide film. Ceram. Int. 2015, 41, 2976. [Google Scholar] [CrossRef]
- Egbo, K.O.; Liu, C.P.; Ekuma, C.E.; Yu, K.M. Vacancy defects induced changes in the electronic and optical properties of NiO studied by spectroscopic ellipsometry and first-principles calculations. J. Appl. Phys. 2020, 128, 135705. [Google Scholar] [CrossRef]
- Mokoena, T.P.; Swart, H.C.; Hillie, K.T.; Motaung, D.E. Engineering of rare-earth Eu3+ ions doping on p-type NiO for selective detection of toluene gas sensing and luminescence properties. Sens. Actuators B Chem. 2021, 347, 130530. [Google Scholar] [CrossRef]
- Nehru, L.; Umadevi, M.; Sanjeeviraja, C. Studies on structural, optical and electrical properties of ZnO thin films prepared by the spray pyrolysis method. Int. J. Mater. Eng. 2012, 2, 12–17. [Google Scholar] [CrossRef] [Green Version]
- Patil, P.S. Versatility of chemical spray pyrolysis technique. Mater. Chem. Phys. 1999, 59, 185–198. [Google Scholar] [CrossRef]
- Sajilal, K.; Raj, A.M.E. Effect of thickness on structural and magnetic properties of NiO thin films prepared by chemical spray pyrolysis (CSP) technique. Mater. Lett. 2016, 164, 547–550. [Google Scholar] [CrossRef]
- Usharani, N.J.; Bhattacharya, S.S. Effect of defect states in the optical and magnetic properties of nanocrystalline NiO synthesised in a single step by an aerosol process. Ceram. Inter. 2020, 46, 5671. [Google Scholar] [CrossRef]
- Visweswaran, S.; Venkatachalapathy, R.; Haris, M.; Murugesan, R. Structural, morphological, optical and magnetic properties of sprayed NiO thin flms by perfume atomizer. Appl. Phys. A 2020, 126, 524. [Google Scholar] [CrossRef]
- Ukoba, K.O.; Eloka-Eboka, A.C.; Inambao, F.L. Review of nanostructured NiO thin film deposition using the spray pyrolysis technique. Renew. Sust. Energ. Rev. 2018, 82, 2900–2915. [Google Scholar] [CrossRef]
- Park, J.W.; Choi, K.N.; Baek, S.H.; Chung, K.S.; Hosun, L.E.E. Optical Properties of NiO Thin Films Grown by Using Sputtering Deposition and Studied with Spectroscopic Ellipsometry. J. Korean Phys. Soc. 2008, 52, 1868–1876. [Google Scholar] [CrossRef]
- Lu, H.L.; Scarel, G.; Alia, M.; Fanciulli, M.; Ding, S.J.; Zhang, D.W. Spectroscopic ellipsometry study of thin NiO films grown on Si (100) by atomic layer deposition. Appl. Phys. Lett. 2008, 92, 222907. [Google Scholar] [CrossRef]
- Boubaker, K.; Chaouachi, A.; Amlouk, M.; Bouzouita, H. Enhancement of pyrolysis spray disposal performance using thermal time-response to precursor uniform deposition. Eur. Phys. J. Appl. Phys. 2007, 37, 105. [Google Scholar] [CrossRef]
- Mighell, A.D.; Hubbard, C.R.; Stalick, J.K.; Holomany, M.A. NBS*AIDS83: A Manual Describing the Data Format Used in NBS*AIDS83; JCPDS-International Centre for Diffraction Data: Swarthmore, PA, USA, 1983. [Google Scholar]
- Bergerhoff, G.; Brown, I.D. Crystallographic Databases; International Union of Crystallography: Chester, UK, 1987. [Google Scholar]
- Padhan, A.M.; Alagarsamy, P. Investigation of NiO reduction dynamics and properties of NiO-Ti powders. J. Alloy. Compds. 2020, 840, 155769. [Google Scholar] [CrossRef]
- Amor, M.B.; Boukhachem, A.; Boubaker, K.; Amlouk, M. Structural, optical and electrical studies on Mg-doped NiO thin films for sensitivity applications. Mater. Sci. Semicond. Process. 2014, 27, 994. [Google Scholar] [CrossRef]
- Loukil, A.; Boukhachem, A.; Amor, M.B.; Ghamnia, M.; Raouadi, K. Effects of potassium incorporation on the structural, optical, vibrational and electrical properties of NiO sprayed thin films for p-type optical windows. Ceram. Int. 2016, 42, 8274. [Google Scholar] [CrossRef]
- Chakhoum, M.A.; Boukhachem, A.; Ghamnia, M.; Benameur, N.; Mahdhi, N.; Raouadi, K.; Amlouk, M. An attempt to study (111) oriented NiO-like TCO thin films in terms of structural, optical properties and photocatalytic activities under strontium doping. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 205, 649. [Google Scholar] [CrossRef]
- Reddy, A.J.; Kokila, M.K.; Nagabhushana, H.; Sharma, S.C.; Rao, J.L.; Shivakumara, C.; Nagabhushana, B.M.; Chakradhar, R.P.S. Structural, EPR, photo and thermoluminescence properties of ZnO:Fe nanoparticles. Mater. Chem. Phys. 2012, 133, 876. [Google Scholar] [CrossRef]
- Mahdi, M.A.; Hassan, Z.; Ng, S.S.; Hassan, J.J.; MohdBakhori, S.K. Structural and optical properties of nanocrystalline CdS thin films prepared using microwave-assisted chemical bath deposition. Thin Solid Films 2012, 520, 3477. [Google Scholar] [CrossRef]
- Boughalmi, R.; Rahmani, R.; Boukhachem, A.; Amrani, B.; Driss-Khodja, K.; Amlouk, M. Metallic behavior of NiS thin film under the structural, optical, electrical and ab initio investigation frameworks. Mater. Chem. Phys. 2015, 163, 99–106. [Google Scholar] [CrossRef]
- Jaballah, R.; Gassoumi, B.; Othmani, A.; Loukil, A.; Boukhachem, A.; Ghamnia, M.; Kamoun-Turki, N.; Amlouk, M. Synthesis, structural, electrical and electrochemical investigations of CoNi2S4 thin films for solid fuel applications. Opt.—Int. J. Light Electron Opt. 2021, 242, 167003. [Google Scholar] [CrossRef]
- Blanc, E.; Schwarzenbach, D.; Flack, H.D. The evaluation of transmission factors and their first derivatives with respect to crystal shape parameters. J. Appl. Crystallogr. 1991, 24, 1035–1041. [Google Scholar] [CrossRef]
- Ristova, M.; Kuo, Y.; Lee, S. Influence of the roughness of molybdenum back electrode on the photodiode characteristics under He–Ne illumination. Semicond. Sci. Technol. 2003, 18, 788. [Google Scholar] [CrossRef]
- Boukhachem, A.; Bouzidi, C.; Boughalmi, R.; Ouerteni, R.; Kahlaoui, M.; Ouni, B.; Elhouichet, H.; Amlouk, M. Physical investigations on MoO3 sprayed thin film for selective sensitivity applications. Ceram. Int. 2014, 40, 13427. [Google Scholar] [CrossRef]
- Boukhachem, A.; Mokhtari, M.; Benameur, N.; Ziouche, A.; Martínez, M.; Petkova, P.; Ghamnia, M.; Cobo, A.; Zergoug, M.; Amlouk, M. Structural optical magnetic properties of Co doped α-MoO3 sprayed thin films. Sens. Actuators A 2017, 253, 198. [Google Scholar] [CrossRef]
- Azzam, R.M.A.; Bashara, N.M. Ellipsometry and Polarized Light; North-Holland: New York, NY, USA, 1977. [Google Scholar]
- Gonzalez-Fuentes, C.; Gonzalez-Diaz, J.B.; Fallarino, L.; Arregi, J.A.; Berger, A. Influence of the light incidence angle on the precision of generalized magneto-optical ellipsometry. Magn. Magn. Mater. 2015, 386, 150. [Google Scholar] [CrossRef]
- Sampath, U.; Kim, H.; Kim, D.G.; Kim, Y.C.; Song, M. In-situ cure monitoring of wind turbine blades by using fiber Bragg grating sensors and Fresnel reflection measurement. Sensors 2015, 15, 18229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sdiri, N.; Boukhachem, A.; Dhahri, E. Optical investigations of la07ca0.3-xkxmno3 (x = 0.00, 0.05 and 0.10) probed by spectroscopic ellipsometry. Ceram. -Silikáty 2012, 56, 95. [Google Scholar]
- Kumari, N.; Krupanidhi, S.B.; Varma, K.B.R. Structural and electrical characterization of Bi2VO5.5/Bi4Ti3O12 bilayer thin films deposited by pulsed laser ablation technique. Mater. Res. Bull. 2010, 45, 465. [Google Scholar] [CrossRef] [Green Version]
- Aspnes, D.E. Approximate solution of ellipsometric equations for optically biaxial crystals. J. Opt. Soc. Am. 1980, 70, 1275. [Google Scholar] [CrossRef]
- Boukhachem, A.; Ouni, B.; Karyaoui, M.; Madani, A.; Chtourou, R.; Amlouk, M. Structural, opto-thermal and electrical properties of ZnO:Mo sprayed thin films. Mater. Sci. Semicond. Process. 2012, 15, 282. [Google Scholar] [CrossRef]
- Arabi, H.; Moghadam, N.K. Nanostructure and magnetic properties of magnesium ferrite thin films deposited on glass substrate by spray pyrolysis. J. Magn. Magn. Mater. 2013, 335, 144. [Google Scholar] [CrossRef]
- Wang, J.; Sun, J.; Sun, Q.; Chen, Q. Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies. Mater. Res. Bull. 2003, 38, 1113. [Google Scholar] [CrossRef]
- Che, S.; Wang, J.; Chen, Q. Soft magnetic nanoparticles of BaFe12O19 fabricated under mild conditions. J. Phys. Condens. Matter 2003, 15, L335. [Google Scholar] [CrossRef]
- Gandhi, A.; Pant, J.; Pandit, S.D.; Dalimbkar, S.K.; Chan, T.S.; Cheng, C.L.; Ma, Y.R.; Wu, S.Y. Short-Range Magnon Excitation in NiO Nanoparticle. J. Phys. Chem. C 2013, 117, 18666–18674. [Google Scholar] [CrossRef]
- Bhide, V.G.; Shenoy, G.K. Fe57 Mössbauer Effect in Nickel Oxide. Phys. Rev. 1966, 143, 309. [Google Scholar] [CrossRef]
- Bartel, L.C.; Morosin, B. Exchange Striction in NiO. Phys. Rev. B 1971, 3, 1039. [Google Scholar] [CrossRef]
- Echresh, A.; Chey, C.O.; Shoushtari, M.Z.; Khranovskyy, V.; Nur, O.; Willander, M. UV photo-detector based on p-NiO thin film/n-ZnO nanorods heterojunction prepared by a simple process. J. Alloys Compd. 2015, 632, 165. [Google Scholar] [CrossRef] [Green Version]
- Kisan, B.; Saravanan, P.; Layek, S.; Verma, H.C.; Hesp, D.; Dhanak, V.; Krishnamurthy, S.; Perumal, A. Effect of annealing on the magnetic properties of ball milled NiO powders. J. Magn. Magn. Mater. 2015, 384, 296. [Google Scholar] [CrossRef]
- Layek, S.; Verma, H.C. Room temperature ferromagnetism in Mn-doped NiO nanoparticles. J. Magn. Magn. Mater. 2016, 397, 73. [Google Scholar] [CrossRef]
- Mott, N.F. Conduction in non-crystalline materials. Philos. Mag. 1969, 19, 835. [Google Scholar] [CrossRef]
d111(Å) | d200(Å) | d022(Å) | d222(Å) | a(Å) | |
---|---|---|---|---|---|
NiO | 2.4224 | 2.0925 | 1.4813 | 1.2171 | 4.1850 |
Orientation | (111) | (002) | (022) | (222) |
---|---|---|---|---|
D (nm) | 81.68 | 24.35 | 21.58 | 223.52 |
ε (10−4) | 6.99 | 20.72 | 18.00 | 1.57 |
δ (1014 lines/m2) | 1.50 | 16.86 | 21.48 | 0.20 |
TC | 3.37 | 0.23 | 0.13 | 0.27 |
<D> (nm) | ε (10−4) | δ (1014 lines/m2) |
---|---|---|
86.00 | 7.77 | 2.94 |
Element | Weigh % | Atomic % |
---|---|---|
Ni | 76.4 | 48.22 |
O | 21.65 | 50.12 |
Cl | 1.95 | 1.66 |
Ms (10−4 emu) | Mr (10−5 emu) | Hc (Oe) |
---|---|---|
3.95 | 1.05 | 38.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Gouider Trabelsi, A.; Alkallas, F.H.; Ziouche, A.; Boukhachem, A.; Ghamnia, M.; Elhouichet, H. Structural Defect Impact on Changing Optical Response and Raising Unpredicted Ferromagnetic Behaviour in (111) Preferentially Oriented Nanocrystalline NiO Films. Crystals 2022, 12, 692. https://doi.org/10.3390/cryst12050692
Ben Gouider Trabelsi A, Alkallas FH, Ziouche A, Boukhachem A, Ghamnia M, Elhouichet H. Structural Defect Impact on Changing Optical Response and Raising Unpredicted Ferromagnetic Behaviour in (111) Preferentially Oriented Nanocrystalline NiO Films. Crystals. 2022; 12(5):692. https://doi.org/10.3390/cryst12050692
Chicago/Turabian StyleBen Gouider Trabelsi, Amira, Fatemah. H. Alkallas, Aicha Ziouche, Abdelwaheb Boukhachem, Mostefa Ghamnia, and Habib Elhouichet. 2022. "Structural Defect Impact on Changing Optical Response and Raising Unpredicted Ferromagnetic Behaviour in (111) Preferentially Oriented Nanocrystalline NiO Films" Crystals 12, no. 5: 692. https://doi.org/10.3390/cryst12050692
APA StyleBen Gouider Trabelsi, A., Alkallas, F. H., Ziouche, A., Boukhachem, A., Ghamnia, M., & Elhouichet, H. (2022). Structural Defect Impact on Changing Optical Response and Raising Unpredicted Ferromagnetic Behaviour in (111) Preferentially Oriented Nanocrystalline NiO Films. Crystals, 12(5), 692. https://doi.org/10.3390/cryst12050692