Heterostructured Nanoscale Photocatalysts via Colloidal Chemistry for Pollutant Degradation
Abstract
:1. Introduction
2. Colloidal Synthesis of Nanoscale Photocatalysts
2.1. Sol–Gel Method
2.2. Immobilizing Photocatalysts in Aerogel Frameworks
3. Different Heterojunctions for Pollutant Degradation
3.1. Straddling Gap Heterojunctions
3.2. Staggered Gap Heterojunctions
3.3. p-n Heterojunctions
3.4. Direct Z-Scheme Heterojunctions
4. Conclusions
5. Prospects
- (1)
- The preparation of heterostructured photocatalysts should ensure that the process is simple, efficient, economically and environmentally-friendly. Meanwhile, accurate control of heterojunction morphology, contact interface, crystallization and layered assembly should be achieved. With the further development of nanomaterials and colloidal chemistry, it is possible to make further progress in the preparation of heterostructured photocatalysts.
- (2)
- Research on photogenerated electron and hole migration in heterostructured photocatalysts to confirm the formation of different heterojunctions should be perfected. At present, there are still gaps in studies that can directly explain the electron and hole migration at the cross-section of heterojunctions, and only a limited number of characteristics can confirm their spatial separation.
- (3)
- It is essential to develop novel materials for the preparation of heterostructured photocatalysts, mainly those with appropriate bandgap structure, high visible-light absorption region, high optical stability and other characteristics. Advanced materials with high catalytic and economic efficiency are of paramount importance in the practical application of heterostructured photocatalysts.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviations | Acronyms |
0D | Zero-dimensional |
2D | Two-dimensional |
Ti(OiPr)4 | Titanium(IV) isopropoxide |
P123 | Polyethylene oxide-polypropylene oxide-polyethylene oxide |
meso | Mesoporous |
GA | Graphene aerogel |
LDH | Lactate dehydrogenase |
ATP | Attapulgite |
I-WZ | Waste zeolite-type catalysts |
GO | Graphene oxide |
rGO | Reduced graphene oxide |
ROS | Reactive oxygen species |
XPS | X-ray photoelectron spectroscopy |
EIS | Electrochemical impedance spectroscopy |
FT-IR | Fourier transform infrared spectrometer |
SCR | Selective catalytic reduction |
MO | Methyl orange |
MB | Methylene blue |
RhB | Rhodamine b |
CIP | Ciprofloxacin |
4-NP | P-nitrophenol |
p-CP | 4-chlorophenol |
TC | Tetracycline |
DCF | Diclofenac |
KTF | Ketoprofen |
E. coli | Escherichia coli |
References
- Santos, M.S.F.; Alves, A.; Madeira, L.M. Chemical and photochemical degradation of polybrominated diphenyl ethers in liquid systems: A review. Water Res. 2016, 88, 39–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awfa, D.; Ateia, M.; Fujii, M.; Johnson, M.S.; Yoshimura, C. Photodegradation of pharmaceuticals and personal care products in water treatment using carbonaceous-TiO2 composites: A critical review of recent literature. Water Res. 2018, 142, 26–45. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Dhiman, A.; Sudhagar, P.; Krishnan, V. ZnO-graphene quantum dots heterojunctions for natural sunlight-driven photocatalytic environmental remediation. Appl. Surf. Sci. 2018, 447, 802–815. [Google Scholar] [CrossRef] [Green Version]
- Parul; Kaur, K.; Badru, R.; Singh, P.P.; Kaushal, S. Photodegradation of organic pollutants using heterojunctions: A review. J. Environ. Chem. Eng. 2020, 8, 103666. [Google Scholar] [CrossRef]
- Sun, C.-J.; Zhao, L.-P.; Wang, R. Recent advances in heterostructured photocatalysts for degradation of organic pollutants. Mini-Rev. Org. Chem. 2021, 18, 649–669. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Q.; Shi, X.; Song, Q.; Zhou, C.; Jiang, D. Photocatalytic reduction of CO2 into CH4 over Ru-doped TiO2: Synergy of Ru and oxygen vacancies. J. Colloid Interf. Sci. 2022, 608, 2809–2819. [Google Scholar] [CrossRef]
- Zhu, J.; Zhu, Y.; Zhou, W. Cu-doped Ni-LDH with abundant oxygen vacancies for enhanced methyl 4-hydroxybenzoate degradation via peroxymonosulfate activation: Key role of superoxide radicals. J. Colloid Interf. Sci. 2022, 610, 504–517. [Google Scholar] [CrossRef]
- Shen, Z.; Li, H.; Hao, H.; Chen, Z.; Hou, H.; Zhang, G.; Bi, J.; Yan, S.; Liu, G.; Gao, W. Novel Tm3+ and Yb3+ Co-doped bismuth tungstate up-conversion photocatalyst with greatly improved photocatalytic properties. J. Photoch. Photobio. A 2019, 380, 111864. [Google Scholar] [CrossRef]
- Wang, P.; Wang, J.; Ming, T.; Wang, X.; Yu, H.; Yu, J.; Wang, Y.; Lei, M. Dye-sensitization-induced visible-light reduction of graphene oxide for the enhanced TiO2 photocatalytic performance. ACS Appl. Mater. Inter. 2013, 5, 2924–2929. [Google Scholar] [CrossRef]
- Zalfani, M.; Hu, Z.-Y.; Yu, W.-B.; Mahdouani, M.; Bourguiga, R.; Wu, M.; Li, Y.; Van Tendeloo, G.; Djaoued, Y.; Su, B.-L. BiVO4/3DOM TiO2 nanocomposites: Effect of BiVO4 as highly efficient visible light sensitizer for highly improved visible light photocatalytic activity in the degradation of dye pollutants. Appl. Catal. B-Environ. 2017, 205, 121–132. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Tan, L.; Liu, X.; Li, Z.; Cui, Z.; Liang, Y.; Zhu, S.; Yang, X.; Yeung, K.W.K.; Wu, S. Superimposed surface plasma resonance effect enhanced the near-infrared photocatalytic activity of Au@Bi2WO6 coating for rapid bacterial killing. J. Hazard. Mater. 2019, 380, 120818. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wu, D.; Luo, Q.; Yin, R.; An, J.; Liu, S.; Wang, D. Fabrication of CPAN/Ag/AgCl composites and their efficient visible-light photocatalytic activity. J. Alloys Compd. 2017, 702, 585–593. [Google Scholar] [CrossRef]
- Sun, D.; Le, Y.; Jiang, C.; Cheng, B. Ultrathin Bi2WO6 nanosheet decorated with Pt nanoparticles for efficient formaldehyde removal at room temperature. Appl. Surf. Sci. 2018, 441, 429–437. [Google Scholar] [CrossRef]
- Zhang, S.; Pu, W.; Chen, A.; Xu, Y.; Wang, Y.; Yang, C.; Gong, J. Oxygen vacancies enhanced photocatalytic activity towards VOCs oxidation over Pt deposited Bi2WO6 under visible light. J. Hazard. Mater. 2020, 384, 121478. [Google Scholar] [CrossRef]
- Low, J.; Yu, J.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A.A. Heterojunction photocatalysts. Adv. Mater. 2017, 29, 1601694. [Google Scholar] [CrossRef]
- Cao, Y.; He, T.; Chen, Y.; Cao, Y. Fabrication of rutile TiO2-Sn/Anatase TiO2-N heterostructure and its application in Visible-Light photocatalysis. J. Phys. Chem. C 2010, 114, 3627–3633. [Google Scholar] [CrossRef]
- Li, X.; Garlisi, C.; Guan, Q.; Anwer, S.; Al-Ali, K.; Palmisano, G.; Zheng, L. A review of material aspects in developing direct Z-scheme photocatalysts. Mate. Today 2021, 47, 75–107. [Google Scholar] [CrossRef]
- Wan, W.; Zhang, R.; Ma, M.; Zhou, Y. Monolithic aerogel photocatalysts: A review. J. Mater. Chem. A 2018, 6, 754–775. [Google Scholar] [CrossRef]
- Palanisamy, B.; Babu, C.M.; Sundaravel, B.; Anandan, S.; Murugesan, V. Sol-gel synthesis of mesoporous mixed Fe2O3/TiO2 photocatalyst: Application for degradation of 4-chlorophenol. J. Hazard. Mater. 2013, 252, 233–242. [Google Scholar] [CrossRef]
- Pei, C.C.; Leung, W.W.-F. Photocatalytic oxidation of nitrogen monoxide and o-xylene by TiO2/ZnO/Bi2O3 nanofibers: Optimization, kinetic modeling and mechanisms. Appl. Catal. B-Environ. 2015, 174–175, 515–525. [Google Scholar] [CrossRef]
- Kanagaraj, T.; Thiripuranthagan, S. Photocatalytic activities of novel SrTiO3–BiOBr heterojunction catalysts towards the degradation of reactive dyes. Appl. Catal. B-Environ. 2017, 207, 218–232. [Google Scholar] [CrossRef]
- Yang, M.; Wang, P.; Li, Y.; Tang, S.; Lin, X.; Zhang, H.; Zhu, Z.; Chen, F. Graphene aerogel-based NiAl-LDH/g-C3N4 with ultratight sheet-sheet heterojunction for excellent visible-light photocatalytic activity of CO2 reduction. Appl. Catal. B-Environ. 2022, 306, 121065. [Google Scholar] [CrossRef]
- Wang, T.; Chang, L.; Wu, H.; Yang, W.; Cao, J.; Fan, H.; Wang, J.; Liu, H.; Hou, Y.; Jiang, Y.; et al. Fabrication of three-dimensional hierarchical porous 2D/0D/2D g-C3N4 modified MXene-derived TiO2@C: Synergy effect of photocatalysis and H2O2 oxidation in NO removal. J. Colloid Interf. Sci. 2022, 612, 434–444. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Integration of 3D macroscopic graphene aerogel with 0D-2D AgVO3-g-C3N4 heterojunction for highly efficient photocatalytic oxidation of nitric oxide. Appl. Catal. B-Environ. 2019, 243, 576–584. [Google Scholar] [CrossRef]
- Bora, L.V.; Mewada, R.K. Visible/solar light active photocatalysts for organic effluent treatment: Fundamentals, mechanisms and parametric review. Renew. Sust. Energ. Rev. 2017, 76, 1393–1421. [Google Scholar] [CrossRef]
- Zhou, H.; Qu, Y.; Zeid, T.; Duan, X. Towards highly efficient photocatalysts using semiconductor nanoarchitectures. Energ. Environ. Sci. 2012, 5, 6732–6743. [Google Scholar] [CrossRef]
- Xie, L.; Du, T.; Wang, J.; Ma, Y.; Ni, Y.; Liu, Z.; Zhang, L.; Yang, C.; Wang, J. Recent advances on heterojunction-based photocatalysts for the degradation of persistent organic pollutants. Chem. Eng. J. 2021, 426, 130617. [Google Scholar] [CrossRef]
- Chen, Z.; Jiang, X.; Zhu, C.; Shi, C. Chromium-modified Bi4Ti3O12 photocatalyst: Application for hydrogen evolution and pollutant degradation. Appl. Catal. B-Environ. 2016, 199, 241–251. [Google Scholar] [CrossRef]
- Li, X.; Yan, X.; Zuo, S.; Lu, X.; Luo, S.; Li, Z.; Yao, C.; Ni, C. Construction of LaFe1−XMnXO3/attapulgite nanocomposite for photo-SCR of NOX at low temperature. Chem. Eng. J. 2017, 320, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Liu, C.; Ou, H.; Ma, T.; Zhang, Y. Self-sacrifice transformation for fabrication of type-I and type-II heterojunctions in hierarchical BiXOYIZ/g-C3N4 for efficient visible-light photocatalysis. Appl. Surf. Sci. 2019, 470, 1101–1110. [Google Scholar] [CrossRef]
- Cipagauta-Díaz, S.; Estrella-González, A.; Gómez, R. Heterojunction formation on InVO4/N-TiO2 with enhanced visible light photocatalytic activity for reduction of 4-NP. Mat. Sci. Semicon. Proc. 2019, 89, 201–211. [Google Scholar] [CrossRef]
- Yaacob, N.; Sean, G.P.; Nazri, N.A.M.; Ismail, A.F.; Abidin, M.N.Z.; Subramaniam, M.N. Simultaneous oily wastewater adsorption and photodegradation by ZrO2–TiO2 heterojunction photocatalysts. J. Water Process Eng. 2021, 39, 101644. [Google Scholar] [CrossRef]
- Yan, X.; Ye, K.; Zhang, T.; Xue, C.; Zhang, D.; Ma, C.; Wei, J.; Yang, G. Formation of three-dimensionally ordered macroporous TiO2@nanosheet SnS2 heterojunctions for exceptional visible-light driven photocatalytic activity. N. J. Chem. 2017, 41, 8482–8489. [Google Scholar] [CrossRef]
- Sun, G.; Gao, Q.; Tang, S.; Ling, R.; Cai, Y.; Yu, C.; Liu, H.; Gao, H.; Zhao, X.; Wang, A. Fabrication and enhanced photocatalytic activity of p–n heterojunction CoWO4/g-C3N4 photocatalysts for methylene blue degradation. J. Electron. Mater. 2022, 51, 3205–3215. [Google Scholar] [CrossRef]
- Liu, S.H.; Lin, W.X. A simple method to prepare g-C3N4-TiO2/waste zeolites as visible-light-responsive photocatalytic coatings for degradation of indoor formaldehyde. J. Hazard. Mater. 2019, 368, 468–476. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhou, H.; Zhang, H.; Song, Y.; Zhang, H.; Qian, X. SiO2@TiO2 Core@Shell nanoparticles deposited on 2D-Layered ZnIn2S4 to form a ternary heterostructure for simultaneous photocatalytic hydrogen production and organic pollutant degradation. Inorg. Chem. 2020, 59, 2278–2287. [Google Scholar] [CrossRef]
- Lei, L.; Wang, D.; Kang, Y.; de Mimerand, Y.d.; Jin, X.; Guo, J. Phosphor-enhanced, visible-light-storing g-C3N4/Ag3PO4/SrAl2O4:Eu2+,Dy3+ photocatalyst immobilized on fractal 3D-Printed supports. ACS Appl. Mater. Inter. 2022, 14, 11820–11833. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, Y.; Guo, Y.; Wan, J.; Yan, Y.; Zhou, Y.; Sun, C. Environmental-friendly synthesis of heterojunction photocatalysts g-C3N4/BiPO4 with enhanced photocatalytic performance. Appl. Surf. Sci. 2021, 544, 148872. [Google Scholar] [CrossRef]
- Liu, C.; Li, X.; Wu, Y.; Zhang, L.; Chang, X.; Yuan, X.; Wang, X. Fabrication of multilayer porous structured TiO2–ZrTiO4–SiO2 heterostructure towards enhanced photo-degradation activities. Ceram. Int. 2020, 46, 476–486. [Google Scholar] [CrossRef]
- De Mimerand, Y.R.; Li, K.; Zhou, C.; Jin, X.; Hu, X.; Chen, Y.; Guo, J. Functional supported ZnO/Bi2MoO6 heterojunction photocatalysts with 3D-Printed fractal polymer substrates and produced by innovative plasma-based immobilization methods. ACS Appl. Mater. Interf. 2020, 12, 43138–43151. [Google Scholar] [CrossRef]
- Babu, B.; Harish, V.V.N.; Koutavarapu, R.; Shim, J.; Yoo, K. Enhanced visible-light-active photocatalytic performance using CdS nanorods decorated with colloidal SnO2 quantum dots: Optimization of core–shell nanostructure. J. Ind. Eng. Chem. 2019, 76, 476–487. [Google Scholar] [CrossRef]
- Zeng, P.; Ji, X.; Su, Z.; Zhang, S. WS2/g-C3N4 composite as an efficient heterojunction photocatalyst for biocatalyzed artificial photosynthesis. RSC Adv. 2018, 8, 20557–20567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Ma, Z. Ag6Mo10O33/g-C3N4 1D-2D hybridized heterojunction as an efficient visible-light-driven photocatalyst. Mol. Catal. 2017, 432, 285–291. [Google Scholar] [CrossRef]
- Kočí, K.; Reli, M.; Troppová, I.; Šihor, M.; Kupková, J.; Kustrowski, P.; Praus, P. Photocatalytic decomposition of N2O over TiO2/g-C3N4 photocatalysts heterojunction. Appl. Surf. Sci. 2017, 396, 1685–1695. [Google Scholar] [CrossRef]
- Shi, S.; Gondal, M.A.; Rashid, S.G.; Qi, Q.; Al-Saadi, A.A.; Yamani, Z.H.; Sui, Y.; Xu, Q.; Shen, K. Synthesis of g-C3N4/BiOClxBr1−x hybrid photocatalysts and the photoactivity enhancement driven by visible light. Colloid Surface A 2014, 461, 202–211. [Google Scholar] [CrossRef]
- Hu, M.; Xing, Z.; Cao, Y.; Li, Z.; Yan, X.; Xiu, Z.; Zhao, T.; Yang, S.; Zhou, W. Ti3+ self-doped mesoporous black TiO2/SiO2/g-C3N4 sheets heterojunctions as remarkable visible-lightdriven photocatalysts. Appl. Catal. B-Environ. 2018, 226, 499–508. [Google Scholar] [CrossRef]
- Li, C.; Sun, H.; Jin, H.; Li, W.; Liu, J.L.; Bashir, S. Performance of ferroelectric visible light type II Ag10Si4O13/TiO2 heterojunction photocatalyst. Catal. Today 2022. [Google Scholar] [CrossRef]
- Sheng, Y.; Wei, Z.; Miao, H.; Yao, W.; Li, H.; Zhu, Y. Enhanced organic pollutant photodegradation via adsorption/photocatalysis synergy using a 3D g-C3N4/TiO2 free-separation photocatalyst. Chem. Eng. J. 2019, 370, 287–294. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Chen, Z.; Hu, J.; Li, S.; Wang, Z.; Liu, J.; Wang, X. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234–5244. [Google Scholar] [CrossRef]
- Peng, Y.; Yan, M.; Chen, Q.; Fan, C.; Zhou, H.; Xu, A. Novel one-dimensional Bi2O3–Bi2WO6 p–n hierarchical heterojunction with enhanced photocatalytic activity. J. Mater. Chem. A 2014, 2, 8517–8524. [Google Scholar] [CrossRef]
- Guo, D.; Cai, P.; Sun, J.; He, W.; Wu, X.; Zhang, T.; Wang, X.; Zhang, X. Reduced-graphene-oxide/metal-oxide p-n heterojunction aerogels as efficient 3D sensing frameworks for phenol detection. Carbon 2016, 99, 571–578. [Google Scholar] [CrossRef]
- Wei, K.; Armutlulu, A.; Wang, Y.; Yao, G.; Xie, R.; Lai, B. Visible-light-driven removal of atrazine by durable hollow core-shell TiO2@LaFeO3 heterojunction coupling with peroxymonosulfate via enhanced electron-transfer. Appl. Catal. B-Environ. 2022, 303, 120889. [Google Scholar] [CrossRef]
- Qu, J.; Sun, X.; Yang, C.; Xue, L.; Li, Z.; Cui, B.; Hu, Y.; Du, Y.; Ji, P. Novel p-n type polyimide aerogels/BiOBr heterojunction for visible light activated high efficient photocatalytic degradation of organic contaminants. J. Alloys Compd. 2022, 900, 163469. [Google Scholar] [CrossRef]
- Azmi, R.; Aqoma, H.; Hadmojo, W.T.; Yun, J.; Yoon, S.; Kim, K.; Do, Y.R.; Oh, S.; Jang, S. Low-Temperature-Processed 9% colloidal quantum dot photovoltaic devices through interfacial management of p-n heterojunction. Adv. Energy Mater. 2016, 6, 1502146. [Google Scholar] [CrossRef]
- Zhang, N.; Li, J.J.; Li, Y.; Wang, H.; Zhang, J.Y.; Liu, Y.; Fang, Y.Z.; Liu, Z.; Zhou, M. Visible-light driven boosting electron-hole separation in CsPbBr3 QDs@2D Cu-TCPP heterojunction and the efficient photoreduction of CO2. J. Colloid Interf. Sci. 2022, 608, 3192–3203. [Google Scholar] [CrossRef]
- Li, J.; Wang, S.; Sun, G.; Gao, H.; Yu, X.; Tang, S.; Zhao, X.; Yi, Z.; Wang, Y.; Wei, Y. Facile preparation of MgAl2O4/CeO2/Mn3O4 heterojunction photocatalyst and enhanced photocatalytic activity. Mater. Today Chem. 2021, 19, 100390. [Google Scholar] [CrossRef]
- Zhu, J.; He, J.; Hu, L. A novel Cu2O@HNbWO6 heterojunction photocatalyst with enhanced photocatalytic performance. Mater. Lett. 2019, 254, 297–300. [Google Scholar] [CrossRef]
- Zheng, C.; Yang, H.; Cui, Z.; Zhang, H.; Wang, X. A novel Bi4Ti3O12/Ag3PO4 heterojunction photocatalyst with enhanced photocatalytic performance. Nanoscale Res. Lett. 2017, 12, 608. [Google Scholar] [CrossRef]
- Liu, B.; Tian, L.; Wang, Y. One-pot solvothermal synthesis of ZnSe.xN2H4/GS and ZnSe/N-GS and enhanced visible-light photocatalysis. ACS Appl. Mater. Interf. 2013, 5, 8414–8422. [Google Scholar] [CrossRef]
- Dai, G.; Yu, J.; Liu, G. Synthesis and enhanced visible-light photoelectrocatalytic activity of p−n junction BiOI/TiO2 nanotube arrays. J. Phys. Chem. C 2011, 115, 7339–7346. [Google Scholar] [CrossRef]
- Chen, P.; Xiao, T.; Li, H.; Yang, J.; Wang, Z.; Yao, H.; Yu, S. Nitrogen-doped graphene/ZnSe nanocomposites:Hydrothermal synthesis and their enhanced electrochemical and photocatalytic activities. ACS Nano 2012, 6, 712–719. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Fan, J.; Zhao, Y.; Hu, X.; Zhang, X.; Tang, Z. Visible light driven CuBi2O4/Bi2MoO6 p-n heterojunction with enhanced photocatalytic inactivation of E. coli and mechanism insight. J. Hazard. Mater. 2020, 381, 121006. [Google Scholar] [CrossRef] [PubMed]
- Brad, A.J. Photoelectrochemistry and herteogeneous photocatalysis at semiconductors. J. Photochem. 1979, 10, 59–75. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, L.; Yu, J.; Wageh, S.; Al-Ghamdi, A.A.; Jaroniec, M. Direct Z-scheme photocatalysts: Principles, synthesis, and applications. Mater. Today 2018, 21, 1042–1063. [Google Scholar] [CrossRef]
- Zhang, W.; Mohamed, A.R.; Ong, W.J. Z-Scheme photocatalytic systems for carbon dioxide reduction: Where are we now? Angew. Chem. Int. Edit. 2020, 59, 22894–22915. [Google Scholar] [CrossRef]
- Zhou, P.; Yu, J.; Jaroniec, M. All-solid-state Z-scheme photocatalytic systems. Adv. Mater. 2014, 26, 4920–4935. [Google Scholar] [CrossRef]
- Jia, Y.; Ma, H.; Liu, C. Au nanoparticles enhanced Z-scheme Au-CoFe2O4/MoS2 visible light photocatalyst with magnetic retrievability. Appl. Surf. Sci. 2019, 463, 854–862. [Google Scholar] [CrossRef]
- Kumara, A.; Khana, M.; Zenga, X.; Lo, I.M.C. Development of g-C3N4/TiO2/Fe3O4@SiO2 heterojunction via sol-gel route: A magnetically recyclable direct contact Z-scheme nanophotocatalyst for enhanced photocatalytic removal of ibuprofen from real sewage effluent under visible light. Chem. Eng. J. 2018, 353, 645–656. [Google Scholar] [CrossRef]
- Li, X.; Shi, H.; Yan, X.; Zuo, S.; Zhang, Y.; Wang, T.; Luo, S.; Yao, C.; Ni, C. Palygorskite immobilized direct Z-Scheme Nitrogen-doped carbon quantum dots/PrFeO3 for photo-SCR removal of NOX. ACS Sustain. Chem. Eng. 2018, 6, 10616–10627. [Google Scholar] [CrossRef]
- Li, B.; Li, X.; Shao, C.; Li, X.; Liu, H.; Yang, S.; Tao, R.; Liu, Y. Hierarchically porous In2O3/In2S3 heterostructures as micronano photocatalytic reactors prepared by a novel polymer-assisted Sol–Gel Freeze-Drying method. Ind. Eng. Chem. Res. 2019, 58, 14106–14114. [Google Scholar] [CrossRef]
- Yao, Z.; Liu, X.; Sui, H.; Sun, H. Enhanced photocatalytic performance of dual Z-scheme BPQDs/g-C3N4/BiFeO3 composites and mechanism insight. Mater. Lett. 2020, 275, 128007. [Google Scholar] [CrossRef]
- Zhao, P.; Jin, B.; Zhang, Q.; Peng, R. Fabrication of g-C3N4/Bi2WO6 as a direct Z-scheme excellent photocatalyst. N. J. Chem. 2022, 46, 5751–5760. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, C.; He, W.; Wei, Y.; Zhao, Z.; Liu, J. The Z-scheme g-C3N4/3DOM-WO3 photocatalysts with enhanced activity for CO2 photoreduction into CO. Chin. Chem. Lett. 2022, 33, 939–942. [Google Scholar] [CrossRef]
- Toe, E.D.; Kurniawan, W.; Andrews, E.M.; Nakasaki, K.; Hinode, H.; Aziz, M. All-solid-state Z-scheme plasmonic Si@Au nanoparticles on CuBi2O4/BiVO4 for efficient photocatalytic activity. Adv. Powder Technol. 2021, 32, 4330–4342. [Google Scholar] [CrossRef]
- Jin, H.; Dong, J.; Qu, X. Magnetic organic polymer gel decorating Ag3PO4 as Z-scheme photocatalyst for water decontamination. Colloid Surface A 2021, 614, 126160. [Google Scholar] [CrossRef]
- Zheng, X.; Han, H.; Ye, X.; Meng, S.; Zhao, S.; Wang, X.; Chen, S. Fabrication of Z-Scheme WO3/KNbO3 photocatalyst with enhanced separation of charge carriers. Chem. Res. Chin. Univ. 2020, 36, 901–907. [Google Scholar] [CrossRef]
- Sacco, O.; Murcia, J.J.; Lara, A.E.; Hernández-Laverde, M.; Rojas, H.; Navío, J.A.; Hidalgo, M.C.; Vaiano, V. Pt–TiO2–Nb2O5 heterojunction as effective photocatalyst for the degradation of diclofenac and ketoprofen. Mat. Sci. Semicon. Proc. 2020, 107, 104839. [Google Scholar] [CrossRef]
- Fu, Z.; Wang, H.; Wang, Y.; Wang, S.; Li, Z.; Sun, Q. Construction of three-dimensional g-C3N4/Gr-CNTs/TiO2 Z-scheme catalyst with enhanced photocatalytic activity. Appl. Surf. Sci. 2020, 510, 145494. [Google Scholar] [CrossRef]
- Yu, H.; Huang, B.; Wang, H.; Yuan, X.; Jiang, L.; Wu, Z.; Zhang, J.; Zeng, G. Facile construction of novel direct solid-state Z-scheme AgI/BiOBr photocatalysts for highly effective removal of ciprofloxacin under visible light exposure: Mineralization efficiency and mechanisms. J. Colloid Interf. Sci. 2018, 522, 82–94. [Google Scholar] [CrossRef]
- Xu, D.; Cheng, B.; Cao, S.; Yu, J. Enhanced photocatalytic activity and stability of Z-scheme Ag2CrO4-GO composite photocatalysts for organic pollutant degradation. Appl. Catal. B-Environ. 2015, 164, 380–388. [Google Scholar] [CrossRef]
Kind | Method | Features |
---|---|---|
Direct synthesis | Sol–gel method | High homogeneity and high specific surface area; highly dispersed metal components; controllable synthesis process; controllable composition of the material |
Assembly method | Cheap for mass production; fast, simple and convenient; no cleanroom facility needed; unable to fabricate very complex structures; difficult to control over crystal orientation | |
Template method | Simple synthesis process; capable of mass production; easy to control the size, shape and dispersion of materials; especially suitable for the synthesis of one-dimensional materials and structures | |
Immobilizing photocatalysts in aerogel frameworks | Graphene-based aerogel framework | Frequently use the hydrothermal method; energy-consuming; difficult for large-scale production |
Polymer aerogel framework | Easy to load catalyst; high mechanical strength; convenient synthesis; low cost |
Photocatalyst | Pollutant | Effect | Ref. |
---|---|---|---|
InVO4/N-TiO2 | 4-NP | Present a reduction in 4-NP of 89% at a time of 90 min for all materials. | [31] |
ZrO2/TiO2 | Oily wastewater | Exhibit adsorption–photodegradation of 95%, respectively within 300 min for oily wastewater at 100 ppm | [32] |
BixOyIz/g-C3N4 | MO | Present almost 98% decomposition of MO molecules | [30] |
TiO2@nanosheet SnS2 | RhB | The highest photocatalytic activity for RhB solution = 0.035 min−1 | [33] |
CoWO4/g-C3N4 | MB | The highest photocatalytic efficiency up to 94.5% after 100 min | [34] |
Bi4Ti2.6Cr0.4O12 | MO | Show the highest ~91% of MO degradation | [28] |
Photocatalyst | Pollutant | Effect | Ref. |
---|---|---|---|
g-C3N4/Ag3PO4/SrAl2O4 | RhB | Present the RhB degradation rates of 94.75%; the overall loss of photoactivity from the first to the fourth run, 8.15% | [37] |
g-C3N4/BiPO4 | TC | Decompose 97% TC after 120 min illumination | [38] |
TiO2/ZrTiO4/SiO2 | RhB | Show excellent adsorption rate (75.6%, 60 min) and photodegradation rate (95%, 90 min) | [39] |
ZnO/Bi2MoO6 | RhB | 99.4% degradation of RhB dye at the first run, only a small drop of photoactivity of 7.8% | [40] |
CdS@SnO2 | RhB | Degraded rhodamine B dye almost completely within 60 min | [41] |
WS2/g-C3N4 | CO | A methanol productivity of 372.1 μmol h−1 gcat−1 | [42] |
Ag6Mo10O33/g-C3N4 | MO | The RhB or MB degradation efficiency reaches 100% after 60 min of irradiation | [43] |
TiO2/g-C3N4 | N2O | The N2O decomposition reaches 1.2 h−1 | [44] |
g-C3N4/BiOClxBr1−x | RhB | Complete photodecomposition of RhB in 60 min under visible light exposure | [45] |
TiO2/SiO2/g-C3N4 | Phenol | Exhibit the degradation of phenol (98.5%), reduction of Cr6+ (97%) and photocatalytic hydrogen evolution (572.6 μmol h−1 g−1) | [46] |
Ag10Si4O13/TiO2 | MB | The rate of MB decomposition followed a pseudo-first-order kinetic profile (98.2% within 35 min) | [47] |
3D g-C3N4/TiO2 | Phenol | The maximum removal rate of phenol reaches 30.8%, and remains at about 16.0% after 90 h | [48] |
Photocatalyst | Pollutant | Effect | Ref. |
---|---|---|---|
CsPbBr3 QDs@2D Cu-TCPP | CO2 | An evolution yield of 287.08 mmol g−1 during 4 h reaction with high CO selectivity (99%) | [55] |
MgAl2O4/CeO2/Mn3O4 | MB | The degradation percentage is up to 94.5%, and maintains 81.8% after the fifth repetition | [56] |
Cu2O@HNbWO6 | MB | The degradation rate of the composite is nearly 90.0% in 120 min | [57] |
Bi4Ti3O12/Ag3PO4 | RhB | The percentage degradation of RhB after 30 min of photocatalysis reaches 99.5% | [58] |
ZnSe·xN2H4/GS | MB | The percentage degradation of MB after 4.5 h reaches 62.8% | [59] |
BiOI/TiO2 | MO | The percentage degradation of MB is 92%, and the rate constant of MO decomposition is about 0.015 | [60] |
GN/ZnSe | MO | The bleaching of MO reaches 71.50% after 7 h | [61] |
CuBi2O4/Bi2MoO6 | E. coli | Completely inactivate E.coli cells within 4 h | [62] |
Photocatalyst | Pollutant | Effect | Ref. |
---|---|---|---|
g-C3N4/Bi2WO6 | MB | The photodegradation efficiency of the 2% CNQD/BWO composites was 82.0%, and achieved 71.8% after the 4th cycle | [72] |
g-C3N4/3DOM-WO3 | CO2 | The formation rate of CO product is 48.7 μmol g−1 h−1 | [73] |
CuBi2O4/BiVO4 | Phenol | 95% phenol degradation under visible-light irradiation within 3 h | [74] |
Ag3PO4/Fe3O4/MP | TC, p-CP | The catalytic activity of the catalyst over eight experimental runs was above 76% | [75] |
WO3/KNbO3 | RhB, MB | In the RhB degradation the efficiencies were 76% after 20 min reaction; in the MB degradation the efficiencies were 45.3% after 20 min reaction | [76] |
Pt/TiO2/Nb2O5 | DCF, KTF | The optimal photocatalyst showed a DCF and KTF mineralization rate of 0.0555 and 0.0746 min−1, respectively | [77] |
g-C3N4/Gr-CNTs/TiO2 | Phenol | Phenol removal over g-C3N4/Gr-CNTs/TiO2 reached up to 90% within 120 min | [78] |
AgI/BiOBr | CIP | A rapid degradation ability for CIP with a removal efficiency of 90.9% in 1 h | [79] |
Ag2CrO4-GO | MB, RhB, MO | MB, RhB and MO could be completely degraded within 15, 28 and 40 min, respectively | [80] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Zhong, S.; Li, Q.; Ji, Y.; Dong, L.; Zhang, G.; Liu, Y.; He, W. Heterostructured Nanoscale Photocatalysts via Colloidal Chemistry for Pollutant Degradation. Crystals 2022, 12, 790. https://doi.org/10.3390/cryst12060790
Zhang C, Zhong S, Li Q, Ji Y, Dong L, Zhang G, Liu Y, He W. Heterostructured Nanoscale Photocatalysts via Colloidal Chemistry for Pollutant Degradation. Crystals. 2022; 12(6):790. https://doi.org/10.3390/cryst12060790
Chicago/Turabian StyleZhang, Caomeng, Shijie Zhong, Qun Li, Yuanpeng Ji, Liwei Dong, Guisheng Zhang, Yuanpeng Liu, and Weidong He. 2022. "Heterostructured Nanoscale Photocatalysts via Colloidal Chemistry for Pollutant Degradation" Crystals 12, no. 6: 790. https://doi.org/10.3390/cryst12060790
APA StyleZhang, C., Zhong, S., Li, Q., Ji, Y., Dong, L., Zhang, G., Liu, Y., & He, W. (2022). Heterostructured Nanoscale Photocatalysts via Colloidal Chemistry for Pollutant Degradation. Crystals, 12(6), 790. https://doi.org/10.3390/cryst12060790