Mechanisms of Selected Anionic Dye Removal by Clinoptilolite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sorption Experiments
2.3. Instrumental Analyses
2.4. Molecular Dynamic Simulations
3. Results
3.1. Isotherms of MO and ARS Sorption
3.2. Kinetics of MO and ARS Sorption
3.3. Solution pH, Ionic Strength, and Temperature Effects on MO and ARS Sorption
3.4. XRD and FTIR Analyses
3.5. Molecular Dynamic Simulation
3.6. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hanafi, M.F.; Sapawe, N. A review on the water problem associate with organic pollutants derived from phenol, methyl orange, and remazol brilliant blue dyes. Mater. Today: Proceedings 2020, 31, A141–A150. [Google Scholar]
- Hosseini, S.; Khan, M.A.; Malekbala, M.R.; Cheah, W.; Choong, T.S. Carbon coated monolith, a mesoporous material for the removal of methyl orange from aqueous phase: Adsorption and desorption studies. Chem. Eng. J. 2011, 171, 1124–1131. [Google Scholar] [CrossRef]
- Jamshidi, E.; Manteghi, F. Methyl Orange Adsorption by Fe2O3@ Co-Al-Layered Double Hydroxide. Proceedings 2019, 41, 64. [Google Scholar]
- Gregory, C.A.; Gunn, W.G.; Peister, A.; Prockop, D.J. An Alizarin red-based assay of mineralization by adherent cells in culture: Comparison with cetylpyridinium chloride extraction. Anal. Biochem. 2004, 329, 77–84. [Google Scholar] [CrossRef]
- Al-Salihi, K.J.; Alfatlawi, W.R. Synthesis and characterization of low-cost adsorbent and used for Alizarin yellow GG and alizarin Red S dyes removal from aqueous solutions. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2021; Volume 1094, p. 012175. [Google Scholar]
- Biglari, H.; RodríguezíCouto, S.; Khaniabadi, Y.O.; Nourmoradi, H.; Khoshgoftar, M.; Amrane, A.; Vosoughi, M.; Esmaeili, S.; Heydari, R.; Mohammadi, M.J.; et al. Cationic surfactant-modified clay as an adsorbent for the removal of synthetic dyes from aqueous solutions. Int. J. Chem. Reactor Eng. 2018, 16, 20170064. [Google Scholar] [CrossRef]
- Umpuch, C.; Sakaew, S. Removal of methyl orange from aqueous solutions by adsorption using chitosan intercalated montmorillonite. Songklanakarin J. Sci. Technol. 2013, 35, 451–459. [Google Scholar]
- Kang, S.; Qin, L.; Zhao, Y.; Wang, W.; Zhang, T.; Yang, L.; Rao, F.; Song, S. Enhanced removal of methyl orange on exfoliated montmorillonite/chitosan gel in presence of methylene blue. Chemosphere 2020, 238, 124693. [Google Scholar] [CrossRef]
- Hu, P.; Zhang, L.; Wang, J.; Huang, R. Removal of methyl orange from aqueous solution with crosslinked quaternized chitosan/bentonite composite. Desal. Water Treat. 2017, 80, 370–379. [Google Scholar] [CrossRef]
- Ahmad, S.; Yasin, K. Removal of organic pollutants by using surfactant modified Bentonite. J. Chem. Soc. Pakistan 2018, 40, 447. [Google Scholar]
- Bahrudin, N.N.; Nawi, M.A.; Jawad, A.H.; Sabar, S. Adsorption characteristics and mechanistic study of immobilized chitosan-montmorillonite composite for methyl orange removal. J. Polymers Environ. 2020, 28, 1901–1913. [Google Scholar] [CrossRef]
- Yu, X.H.; Lü, H.L.; Zhou, G.W.; Zhou, L.G.; Zhang, Y.C. Absorption of methyl orange by modified fly zeolites. Adv. Mater. Res. 2012, 476, 1365–1369. [Google Scholar] [CrossRef]
- Xing, X.; Chang, P.H.; Lv, G.; Jiang, W.T.; Jean, J.S.; Liao, L.; Li, Z. Ionic-liquid-crafted zeolite for the removal of anionic dye methyl orange. J. Taiwan Inst. Chem. Eng. 2016, 59, 237–243. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, J.; Du, Y.; Li, C.; Wei, K.; Lu, J.; Chen, W.; Yang, L. Preparation and characterization of cationic water-soluble pillar [5] arene-modified zeolite for adsorption of methyl orange. ACS Omega 2019, 4, 17741–17751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mekatel, E.H.; Amokrane, S.; Aid, A.; Nibou, D.; Trari, M. Adsorption of methyl orange on nanoparticles of a synthetic zeolite NaA/CuO. Comptes Rendus Chim. 2015, 18, 336–344. [Google Scholar] [CrossRef]
- Habiba, U.; Siddique, T.A.; Lee, J.J.L.; Joo, T.C.; Ang, B.C.; Afifi, A.M. Adsorption study of methyl orange by chitosan/polyvinyl alcohol/zeolite electrospun composite nanofibrous membrane. Carbohydr. Polym. 2018, 191, 79–85. [Google Scholar] [CrossRef]
- Elmoubarki, R.; Mahjoubi, F.Z.; Tounsadi, H.; Moustadraf, J.; Abdennouri, M.; Zouhri, A.; El Albani, A.; Barka, N. Adsorption of textile dyes on raw and decanted Moroccan clays: Kinetics, equilibrium and thermodynamics. Water Res. Ind. 2015, 9, 16–29. [Google Scholar] [CrossRef]
- Assimeddine, M.; Abdennouri, M.; Barka, N.; Rifi, E.; Sadiq, M. Physicochemical characterization of Moroccan natural clays and the study of their adsorption capacity for the methyl orange and methylene blue removal from aqueous solution. J. Environ. Treat. Tech. 2020, 8, 1258–1267. [Google Scholar]
- Laaziz, A.; Kouda, I.; Barhoun, A.; Draoui, K. Kinetic, isotherm and thermodynamic study of methyl orange adsorption on raw clay from north of Morocco. J. Environ. Treat. Tech. 2021, 9, 675–685. [Google Scholar]
- Leodopoulos, C.; Doulia, D.; Gimouhopoulos, K.; Triantis, T.M. Single and simultaneous adsorption of methyl orange and humic acid onto bentonite. Appl. Clay Sci. 2012, 70, 84–90. [Google Scholar] [CrossRef]
- Bendaho, D.; Ainad, D.T.; Djillali, B. Removal of anionic dye by natural Algerian montmorillonite. J. Environ. Anal. Chem. 2015, 2, 2380–2391. [Google Scholar] [CrossRef]
- Bellifa, A.; Makhlouf, M.; Boumila, Z.H. Comparative study of the adsorption of methyl orange by bentonite and activated carbon. Acta Phys. Pol. A 2017, 132, 466–468. [Google Scholar] [CrossRef]
- Hacıosmanoğlu, G.G.; Genç, S.; Can, Z.S. Efficient removal of methyl orange from aqueous solutions using ulexite. Environ. Technol. Innovation 2021, 22, 101466. [Google Scholar] [CrossRef]
- Teng, M.Y.; Lin, S.H. Removal of methyl orange dye from water onto raw and acid activated montmorillonite in fixed beds. Desalination 2006, 201, 71–81. [Google Scholar] [CrossRef]
- Das, S.; Barman, S.; Thakur, R. Removal of methyl orange and mythelene blue dyes from aqueous solution using low cost adsorbent zeolite synthesized from fly ash. J. Environ. Sci. Engineer. 2012, 54, 472–480. [Google Scholar]
- Al-Dahri, T.; AbdulRazak, A.A.; Khalaf, I.H.; Rohani, S. Response surface modeling of the removal of methyl orange dye from its aqueous solution using two types of zeolite synthesized from coal fly ash. Mater. Express 2018, 8, 234–244. [Google Scholar] [CrossRef]
- Radoor, S.; Karayil, J.; Jayakumar, A.; Parameswaranpillai, J.; Siengchin, S. Efficient removal of methyl orange from aqueous solution using mesoporous ZSM-5 zeolite: Synthesis, kinetics and isotherm studies. Colloids Surf. A 2021, 611, 125852. [Google Scholar] [CrossRef]
- Mirzaei, D.; Zabardasti, A.; Mansourpanah, Y.; Sadeghi, M.; Farhadi, S. Efficacy of Novel NaX/MgO–TiO2 Zeolite Nanocomposite for the Adsorption of Methyl Orange (MO) Dye: Isotherm, Kinetic and Thermodynamic Studies. J. Inorg. Organomet. Polym. Mater. 2020, 30, 2067–2080. [Google Scholar] [CrossRef]
- Das, S.; Barman, S. Studies on removal of Safranine-T and methyl orange dyes from aqueous solution using NaX zeolite synthesized from fly ash. Int. J. Sci. Environ. Technol. 2013, 2, 735–747. [Google Scholar]
- Abidin, A.Z.; Bakar, N.A.; Ng, E.P.; Tan, W.L. Rapid degradation of methyl orange by Ag doped zeolite X in the presence of borohydride. J. Taibah Univ. Sci. 2017, 11, 1070–1079. [Google Scholar] [CrossRef]
- Bensalah, J.; Habsaoui, A.; Abbou, B.; Kadiri, L.; Lebkiri, I. Adsorption of the anionic dye methyl orange on used artificial zeolites: Kinetic study and modeling of experimental data. Mediterranean J. Chem. 2019, 9, 311–316. [Google Scholar] [CrossRef] [Green Version]
- Qiu, M.; Qian, C.; Xu, J.; Wu, J.; Wang, G. Studies on the adsorption of dyes into clinoptilolite. Desal. 2009, 243, 286–292. [Google Scholar] [CrossRef]
- Ebrahimi, R.; Maleki, A.; Shahmoradi, B.; Rezaee, R.; Daraei, H.; Safari, M.; Zandsalimi, Y.; Bahmani, P.; Harkaranahalli Puttaiah, S. Organic dye removal from aqueous media by using acid modified Clinoptilolite. J. Adv. Environ. Health Res. 2018, 6, 118–127. [Google Scholar]
- Nezamzadeh-Ejhieh, A.; Moazzeni, N. Sunlight photodecolorization of a mixture of Methyl Orange and Bromocresol Green by CuS incorporated in a clinoptilolite zeolite as a heterogeneous catalyst. J. Ind. Engineer. Chem. 2013, 19, 1433–1442. [Google Scholar] [CrossRef]
- Armağan, B.; Turan, M.; Özdemir, O.; Çelik, M.S. Color removal of reactive dyes from water by clinoptilolite. J. Environ. Sci. Health, Part A 2004, 39, 1251–1261. [Google Scholar] [CrossRef] [PubMed]
- Akgül, M. Enhancement of the anionic dye adsorption capacity of clinoptilolite by Fe3+-grafting. J. Hazard. Mater. 2014, 267, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Gollakota, A.R.; Munagapati, V.S.; Volli, V.; Gautam, S.; Wen, J.C.; Shu, C.M. Coal bottom ash derived zeolite (SSZ-13) for the sorption of synthetic anion Alizarin Red S (ARS) dye. J. Hazard. Mater. 2021, 416, 125925. [Google Scholar] [CrossRef]
- Alghamdi, A.A.; Al-Odayni, A.B.; Saeed, W.S.; Almutairi, M.S.; Alharthi, F.A.; Aouak, T.; Al-Kahtani, A. Adsorption of azo dye methyl orange from aqueous solutions using alkali-activated polypyrrole-based graphene oxide. Molecules 2019, 24, 3685. [Google Scholar] [CrossRef] [Green Version]
- Sandberg, R.G.; Henderson, G.H.; White, R.D.; Eyring, E.M. Kinetics of acid dissociation-ion recombination of aqueous methyl orange. J. Phys. Chem. 1972, 76, 4023–4025. [Google Scholar] [CrossRef]
- Barbosa, J. Indicators|Acid–Base, In Encyclopedia of Analytical Science, 2nd ed.; Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2005; pp. 360–371. [Google Scholar]
- Fayazi, M.; Ghanei-Motlagh, M.; Taher, M.A. The adsorption of basic dye (Alizarin red S) from aqueous solution onto activated carbon/γ-Fe2O3 nano-composite: Kinetic and equilibrium studies. Mater. Sci. Semicond. Processing 2015, 40, 35–43. [Google Scholar] [CrossRef]
- El-Nahass, M.M.; Zeyada, H.M.; El-Ghamaz, N.A.; Awed, A.S. Structural investigation, thermal analysis and AC conduction mechanism of thermally evaporated alizarin red S thin films. Optik 2018, 170, 304–313. [Google Scholar] [CrossRef]
- Mukherjee, T.; Rahaman, M. Removal of Alizarin Red S dye from aqueous solution by electrocoagulation process. Int. J. Res. Eng. Appl. Manag. (IJREAM) 2018, 4, 287–290. [Google Scholar] [CrossRef]
- Lemlikchi, W.; Sharrock, P.; Fiallo, M.; Nzihou; Mecherri, M.O. Hydroxyapatite and Alizarin sulfonate ARS modeling interactions for textile dyes removal from wastewaters. Procedia Eng. 2014, 83, 378–385. [Google Scholar] [CrossRef]
- Li, Z.; Bowman, R.S. Counterion effects on the sorption of cationic surfactant and chromate on natural clinoptilolite. Environ. Sci. Technol. 1997, 31, 2407–2412. [Google Scholar] [CrossRef]
- Nandini, R.; Vishalakshi, B. A study of interaction of methyl orange with some polycations. E-J. Chem. 2012, 9, 1–14. [Google Scholar] [CrossRef]
- Mikheev, Y.A.; Guseva, L.N.; Ershov, Y.A. Transformations of methyl orange dimers in aqueous–acid solutions, according to UV–Vis spectroscopy data. Russian J. Phys. Chem. A 2017, 91, 1896–1906. [Google Scholar] [CrossRef]
- Tanhaei, B.; Ayati, A.; Iakovleva, E.; Sillanpää, M. Efficient carbon interlayered magnetic chitosan adsorbent for anionic dye removal: Synthesis, characterization and adsorption study. Int. J. Biol. Macromol. 2020, 164, 3621–3631. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, X.; Wang, X.; Carlson, K.; Li, Z. Removal of toluidine blue and safranin O from single and binary solutions using zeolite. Crystals 2021, 11, 1181. [Google Scholar] [CrossRef]
- Alpat, S.K.; Özbayrak, Ö.; Alpat, Ş.; Akçay, H. The adsorption kinetics and removal of cationic dye, Toluidine Blue O, from aqueous solution with Turkish zeolite. J. Hazard. Mater. 2008, 151, 213–220. [Google Scholar] [CrossRef]
- Endler, I.; Höhn, M.; Matthey, B.; Zálešák, J.; Keckes, J.; Pitonak, R. Powder Diffraction Data of Aluminum-Rich FCC-Ti1−xAlxN Prepared by CVD. Coatings 2021, 11, 683. [Google Scholar] [CrossRef]
- Murcia, J.J.; Hidalgo, M.C.; Navío, J.A.; Araña, J.; Doña-Rodríguez, J.M. Correlation study between photo-degradation and surface adsorption properties of phenol and methyl orange on TiO2 Vs platinum-supported TiO2. Appl. Catal. B Environ. 2014, 150, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Chin, Y.P.; Raof, S.F.A.; Sinniah, S.; Lee, V.S.; Mohamad, S.; Manan, N.S.A. Inclusion complex of Alizarin Red S with β-cyclodextrin: Synthesis, spectral, electrochemical and computational studies. J. Mole. Struct. 2015, 1083, 236–244. [Google Scholar] [CrossRef]
- Legan, L.; Retko, K.; Ropret, P. Vibrational spectroscopic study on degradation of alizarin carmine. Microchem. J. 2016, 127, 36–45. [Google Scholar] [CrossRef]
- Mansouri, N.; Rikhtegar, N.; Panahi, H.A.; Atabi, F.; Shahraki, B.K. Porosity, characterization and structural properties of natural zeolite-clinoptilolite-as a sorbent. Environ. Protect. Eng. 2013, 39, 139–152. [Google Scholar] [CrossRef]
- de Oliveira, H.P.; Oliveira, E.G.L.; de Melo, C.P. Aggregation of methyl orange probed by electrical impedance spectroscopy. J. Colloid Interface Sci. 2006, 303, 444–449. [Google Scholar] [CrossRef]
- Kendrick, K.L.; Gilkerson, W.R. The state of aggregation of methyl orange in water. J. Solut. Chem. 1987, 16, 257–267. [Google Scholar] [CrossRef]
- Li, H.; Cao, X.; Zhang, C.; Yu, Q.; Zhao, Z.; Niu, X.; Sun, X.; Liu, Y.; Ma, L.; Li, Z. Enhanced adsorptive removal of anionic and cationic dyes from single or mixed dye solutions using MOF PCN-222. RSC Adv. 2017, 7, 16273–16281. [Google Scholar] [CrossRef] [Green Version]
- Vleugels, L.F.; Domańska, I.; Voets, I.K.; Tuinier, R. On the driving forces for complexation of methyl orange with polycations. J. Colloid Interface Sci. 2017, 491, 141–150. [Google Scholar] [CrossRef]
- Somasundaran, P.; Zhang, L. Reagent Adsorption on Phosphates. Crit. Rev. 2000, 7, 1562–1572. [Google Scholar]
- Myers, H.M. Calcium (II)-mediated doubling of Alizarin adsorption in vitro. Arch. Oral Biol. 1981, 26, 537–539. [Google Scholar] [CrossRef]
Dyes | ∆G (kJ/mol) | ∆H | ∆S | |||
---|---|---|---|---|---|---|
296 K | 306 K | 316 K | 326 K | (kJ/mol) | (kJ/mol/K) | |
MO | −17.6 | −19.0 | −20.4 | −21.7 | 23.5 | 0.14 |
ARS | −20.8 | −20.4 | −19.9 | −19.5 | −34.0 | −0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Baker, J.; Carlson, K.; Li, Z. Mechanisms of Selected Anionic Dye Removal by Clinoptilolite. Crystals 2022, 12, 727. https://doi.org/10.3390/cryst12050727
Wang X, Baker J, Carlson K, Li Z. Mechanisms of Selected Anionic Dye Removal by Clinoptilolite. Crystals. 2022; 12(5):727. https://doi.org/10.3390/cryst12050727
Chicago/Turabian StyleWang, Xisen, Jessica Baker, Kristen Carlson, and Zhaohui Li. 2022. "Mechanisms of Selected Anionic Dye Removal by Clinoptilolite" Crystals 12, no. 5: 727. https://doi.org/10.3390/cryst12050727
APA StyleWang, X., Baker, J., Carlson, K., & Li, Z. (2022). Mechanisms of Selected Anionic Dye Removal by Clinoptilolite. Crystals, 12(5), 727. https://doi.org/10.3390/cryst12050727