Crystal Growth and Characterization of ZrSiS-Type Topological Dirac Semimetals
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, J.; Zhen, W.; Liang, D.; Wang, Y.; Zhang, C. Current jetting distorted planar hall effect in a Weyl semimetal with ultrahigh mobility. Phys. Rev. Mater. 2019, 3, 014201. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zheng, Y.; Shen, Z.; Lu, Y.; Fang, H.; Sheng, F.; Zhou, Y.; Yang, X.; Li, Y.; Feng, C.; et al. Helicity protected ultrahigh mobility Weyl fermions in NbP. Phys. Rev. B 2016, 93, 121112. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, Y.; Saigusa, K.; Wada, T.; Yamakawa, Y.; Yamakage, A.; Sasagawa, T.; Katayama, N.; Takatsu, H.; Kageyama, H.; Takenaka, K. High-mobility carriers induced by chemical doping in the candidate nodal-line semimetal CaAgP. Phys. Rev. B 2020, 102, 121112. [Google Scholar] [CrossRef]
- Hou, Z.; Wang, W.; Xu, G.; Zhang, X.; Wei, Z.; Shen, S.; Liu, E.; Yao, Y.; Chai, Y.; Sun, Y.; et al. High electron mobility and large magnetoresistance in the half-Heusler semimetal LuPtBi. Phys. Rev. B 2015, 92, 235134. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Pang, Y.; Wu, D.; Wang, Z.; Weng, H.; Li, J.; Dai, X.; Fang, Z.; Shi, Y.; Lu, L. Large linear magnetoresistance in Dirac semimetal Cd3As2 with Fermi surfaces close to the Dirac points. Phys. Rev. B 2015, 92, 081306. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Z.; Lu, H.; Liu, Y.; Wang, J.; Jia, S. Large magnetoresistance in compensated semimetals TaAs2 and NbAs2. Phys. Rev. B 2016, 93, 184405. [Google Scholar] [CrossRef] [Green Version]
- Shekhar, C.; Nayak, A.K.; Sun, Y.; Schmidt, M.; Nicklas, M.; Leermakers, I.; Zeitler, U.; Skourski, Y.; Wosnitza, J.; Liu, Z.; et al. Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP. Nat. Phys. 2015, 11, 645–649. [Google Scholar] [CrossRef]
- Baibich, M.N.; Broto, J.M.; Fert, A.; NguyenVanDau, F.; Petroff, F.; Etienne, P.; Creuzet, G.; Friederich, A.; Chazelas, J. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 1988, 61, 2472–2475. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Sun, Y.; Chen, X.-Q.; Franchini, C.; Xu, G.; Weng, H.; Dai, X.; Fang, Z. Dirac semimetal and topological phase transitions in A3Bi (A = Na, K, Rb). Phys. Rev. B 2012, 85, 195320. [Google Scholar] [CrossRef] [Green Version]
- Xiong, J.; Kushwaha, S.; Liang, T.; Krizan, J.; Hirschberger, M.; Wang, W. Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science 2015, 350, 413–416. [Google Scholar] [CrossRef] [Green Version]
- Jia, Z.; Li, C.; Li, X.; Shi, J.; Liao, Z.; Yu, D.; Wu, X. Thermoelectric signature of the chiral anomaly in Cd3As2. Nat. Mater. 2016, 7, 13013. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, H.; Liu, H.; Lu, H.; Yang, W.; Jia, S.; Liu, X.; Xie, X.C.; Wei, J.; Wang, J. Observation of superconductivity induced by a point contact on 3d dirac semimetal Cd3As2 crystals. Nat. Mater. 2016, 15, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Jiang, J.; Zhou, B.; Wang, Z.; Zhang, Y.; Weng, H.; Prabhakaran, D.; Mo, S.-K.; Peng, H.; Dudin, P.; et al. A stable three-dimensional topological Dirac semimetal Cd3As2. Nat. Mater. 2014, 13, 677–681. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.; Zhou, B.; Gyenis, A.; Feldman, B.; Kimchi, I.; Potter, A.; Gibson, Q.; Cava, R.; Vishwanath, A.; Yazdani, A. Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2. Nat. Mater. 2014, 13, 851–856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.-M.; Xu, S.-Y.; Belopolski, I.; Lee, C.-C.; Chang, G.; Wang, B.; Alidoust, N.; Bian, G.; Neupane, M.; Zhang, C.; et al. A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat. Commun. 2015, 6, 7373. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.-L.; Tong, B.; Yuan, Z.; Lin, Z.; Wang, J.; Zhang, J.; Xi, C.-Y.; Wang, Z.; Jia, S.; Zhang, C. Signature of chiral fermion instability in the Weyl semimetal TaAs above the quantum limit. Phys. Rev. B 2016, 94, 250120. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.-Y.; Alidoust, N.; Belopolski, I.; Yuan, Z.; Bian, G.; Chang, T.-R.; Zheng, H.; Strocov, V.N.; Sanchez1, D.S.; Chang, G.; et al. Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide. Nat. Phys. 2015, 11, 748–754. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Zhang, Y.; Huang, J.; Nie, S.; Liu, G.; Liang, A.; Zhang, Y.; Shen, B.; Liu, J.; Hu, C.; et al. Observation of Fermi arc and its connection with bulk states in the candidate type-II Weyl semimetal WTe2. Phys. Rev. B 2016, 94, 241119. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Mou, D.; Jo, N.H.; Sun, K.; Huang, L.; Bud’ko, S.L.; Canfield, P.C.; Kaminski, A. Observation of Fermi arcs in the type-II Weyl semimetal candidate WTe2. Phys. Rev. B 2016, 94, 121113. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wieder, B.J.; Li, J.; Yan, B.; Bernevig, B.A. Higher-Order Topology, Monopole Nodal Lines, and the Origin of Large Fermi Arcs in Transition Metal Dichalcogenides XTe2 (X = Mo; W). Phys. Rev. Lett. 2019, 123, 186401. [Google Scholar] [CrossRef] [Green Version]
- Borisenko, S.; Evtushinsky, D.; Gibson, Q.; Yaresko, A.; Koepernik, K.; Kim, T.; Ali, M.; van den Brink, J.; Hoesch, M.; Fedorov, A.; et al. Time-reversal symmetry breaking type-II Weyl state in YbMnBi2. Nat. Commun. 2019, 10, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Vergniory, M.G.; Kushwaha, S.; Hirschberger, M.; Chulkov, E.V.; Ernst, A.; Ong, N.P.; Cava, R.J.; Bernevig, B.A. Time-Reversal-Breaking Weyl Fermions in Magnetic Heusler Alloys. Phys. Rev. Lett. 2016, 117, 236401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, S.-Y.; Alidoust, N.; Chang, G.; Lu, H.; Singh, B.; Belopolski, I.; Sanchez, D.S.; Zhang, X.; Bian, G.; Zheng, H.; et al. Discovery of Lorentz-violating type II Weyl fermions in LaAlGe. Sci. Adv. 2017, 3, e1603266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Xu, Y.; Lou, R.; Liu, Z.; Li, M.; Huang, Y.; Shen, D.; Weng, H.; Wang, S.; Lei, H. Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions. Nat. Commun. 2018, 9, 1–8. [Google Scholar]
- Phillips, M.; Aji, V. Tunable line node semimetals. Phys. Rev. B 2014, 90, 115111. [Google Scholar] [CrossRef] [Green Version]
- Xie, L.; Schoop, L.M.; Seibel, E.M.; Gibson, Q.D.; Xie, W.; Cava, R.J. A new form of Ca3P2 with a ring of Dirac nodes. APL Mater. 2015, 3, 083602. [Google Scholar] [CrossRef] [Green Version]
- Schoop, L.M.; Ali, M.N.; Straber, C.; Topp, A.; Varykhalov, A.; Marchenko, D.; Duppel, V.; Parkin, S.S.P.; Lotsch, B.V.; Ast, C.R. Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS. Nat. Commun. 2016, 7, 11696. [Google Scholar] [CrossRef]
- Takane, D.; Wang, Z.; Souma, S.; Kakayama, K.; Trang, C.; Sato, T.; Takahashi, T.; Ando, Y. Dirac-node arc in the topological line-node semimetal HfSiS. Phys. Rev. B 2016, 94, 121108. [Google Scholar] [CrossRef] [Green Version]
- Bian, G.; Chang, T.R.; Sankar, R.; Xu, S.Y.; Zheng, H.; Neupert, T.; Chiu, C.K.; Huang, S.M.; Chang, G.; Belopolski, I.; et al. Topological nodal-line fermions in spin-orbit metal PbTaSe2. Nat. commun. 2016, 7, 1. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, L.L.; Mun, E.; Johnson, D.D.; Mou, D.; Huang, L.; Lee, Y.; Bud’ko, S.L.; Canfield, P.C.; Kaminski, A. Dirac node arcs in PtSn4. Nat. Phys. 2016, 12, 667. [Google Scholar] [CrossRef]
- Hosen, M.M.; Dimitri, K.; Belopolski, I.; Maldonado, P.; Sankar, R.; Dhakal, N.; Dhakal, G.; Cole, T.; Oppeneer, P.M.; Kaczorowski, D.; et al. Tunability of the topological nodal-line semimetal phase in ZrSiX-type materials (X = S, Se, Te). Phys. Rev. B 2017, 95, 161101. [Google Scholar] [CrossRef] [Green Version]
- Neupane, M.; Belopolski, I.; Hosen, M.M.; Sanchez, D.S.; Sankar, R.; Szlawska, M.; Xu, S.Y.; Dimitri, K.; Dhakal, N.; Maldonado, P.; et al. Observation of topological nodal fermion semimetal phase in ZrSiS. Phys. Rev. B 2017, 93, 201104. [Google Scholar] [CrossRef] [Green Version]
- Pan, H.; Tong, B.; Yu, J.; Wang, J.; Fu, D.; Zhang, S.; Zhang, S.; Wu, B.; Wan, X.; Zhang, C.; et al. Three-dimensional anisotropic magnetoresistance in the Dirac node-line material ZrSiSe. Sci. Rep. 2018, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Gao, H.; Zhang, J.; Fang, R.; Song, H.; Hu, T.; Stroppa, A.; Li, L.; Wang, X.; Ruan, S.; et al. Lattice dynamics of Dirac node-line semimetal ZrSiS. Phys. Rev. B 2017, 96, 064103. [Google Scholar] [CrossRef]
- He, Q.; Zhou, L.; Rost, A.W.; Huang, D.; Grüneis, A.; Schoop, L.M.; Takagi, H. Real-space visualization of quasiparticle dephasing near the Planckian limit in the Dirac line node material ZrSiS. arXiv 2021, arXiv:2110.11125. [Google Scholar]
- Hu, J.; Tang, Z.; Liu, J.; Liu, X.; Zhu, Y.; Graf, D.; Myhro, K.; Tran, S.; Lau, C.N.; Wei, J.; et al. Evidence of topological nodal-line fermions in ZrSiSe and ZrSiTe. Phys. Rev. Lett. 2016, 117, 016602. [Google Scholar] [CrossRef] [Green Version]
- Ebad-Allah, J.; Krottenmüller, M.; Hu, J.; Zhu, Y.L.; Mao, Z.Q.; Kuntscher, C.A. Infrared spectroscopy study of the nodal-line semimetal candidate ZrSiTe under pressure: Hints for pressure-induced phase transitions. Phys. Rev. B 2019, 99, 245133. [Google Scholar] [CrossRef] [Green Version]
- Klein Haneveld, A.; Jelinek, F. Zirconium Silicide and Germanide Chalcogenides preparation and crystal structures. Recueil 1964, 83, 776–783. [Google Scholar] [CrossRef]
- Kumar, N.; Manna, K.; Qi, Y.; Wu, S.-C.; Wang, L.; Yan, B.; Felser, C.; Shekhar, C. Unusual magnetotransport from Si-square nets in topological semimetal HfSiS. Phys. Rev. B 2017, 95, 121109. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Zhu, Y.; Graf, D.; Tang, Z.; Liu, J.; Mao, Z. Quantum oscillation studies of the topological semimetal candidate ZrGeM (M = S, Se, Te). Phys. Rev. B 2017, 95, 205134. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Chen, T.; Chen, C.; Chen, L.; Zhang, Y.; Gao, G.; Yang, J.; Li, X.; Zhao, W.; Dong, S.; et al. Transport Evidence for Topological Nodal-Line Semimetals of ZrGeSe Single Crystals. ACS Appl. Electron. Mater. 2019, 1, 869–876. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Taskin, A.A.; Frölich, T.; Braden, M.; Ando, Y. Superconductivity in Tl0.6Bi2Te3 Derived from a Topological Insulator. Chem. Mater. 2016, 28, 779–784. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Segawa, K.; Sasaki, S.; Taskin, A.A.; Ando, Y. Ferromagnetism in Cr-doped topological insulator TlSbTe2. APL Mater. 2015, 3, 083302. [Google Scholar] [CrossRef] [Green Version]
- Dai, Y.M.; Bowlan, J.; Li, H.; Miao, H.; Wu, S.F.; Kong, W.D.; Richard, P.; Shi, Y.G.; Trugman, S.A.; Zhu, J.X.; et al. Ultrafast carrier dynamics in the large magnetoresistance material WTe2. Phys. Rev. B 2015, 92, 161104(R). [Google Scholar] [CrossRef] [Green Version]
- Van Delft, M.R.; Pezzini, S.; Khouri, T.; Müller, C.S.A.; Breitkreiz, M.; Schoop, L.M.; Carrington, A.; Hussey, N.E.; Wiedmann, S. Electron-hole tunneling revealed by quantum oscillations in the nodal-line semimetal HfSiS. Phys. Rev. Lett. 2018, 121, 256602. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, T.; Souma, S.; Wang, Z.; Yamauchi, K.; Takane, D.; Oinuma, H.; Nakayama, K.; Horiba, K.; Kumigashira, H.; Oguchi, T.; et al. Evidence for bulk nodal loops and universality of Dirac-node arc surface states in ZrGeXc (Xc = S, Se, Te). Phys. Rev. B 2019, 99, 245105. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Zhu, P.; Yang, L.; Liu, J.; Li, Y.; Wang, Z. Crystal Growth and Characterization of ZrSiS-Type Topological Dirac Semimetals. Crystals 2022, 12, 728. https://doi.org/10.3390/cryst12050728
Yang Y, Zhu P, Yang L, Liu J, Li Y, Wang Z. Crystal Growth and Characterization of ZrSiS-Type Topological Dirac Semimetals. Crystals. 2022; 12(5):728. https://doi.org/10.3390/cryst12050728
Chicago/Turabian StyleYang, Ying, Peng Zhu, Liu Yang, Jinjin Liu, Yongkai Li, and Zhiwei Wang. 2022. "Crystal Growth and Characterization of ZrSiS-Type Topological Dirac Semimetals" Crystals 12, no. 5: 728. https://doi.org/10.3390/cryst12050728
APA StyleYang, Y., Zhu, P., Yang, L., Liu, J., Li, Y., & Wang, Z. (2022). Crystal Growth and Characterization of ZrSiS-Type Topological Dirac Semimetals. Crystals, 12(5), 728. https://doi.org/10.3390/cryst12050728