Study of PDMS Microchannels for Liquid Crystalline Optofluidic Devices in Waveguiding Photonic Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Molds Manufacturing
2.2. LC:PDMS Structures Manufacturing
2.3. Optical Measurements and Observations
3. Results
3.1. LC:PDMS Structures with a Height of 30 µm
3.2. LC:PDMS Structures with a Height of 12 µm
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Psaltis, D.; Quake, S.R.; Yang, C. Developing Optofluidic Technology through the Fusion of Microfluidics and Optics. Nature 2006, 442, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Wang, R.; Bever, C.R.S.; Xing, S.; Hammock, B.D.; Pan, T. Smartphone-Interfaced Lab-on-a-Chip Devices for Field-Deployable Enzyme-Linked Immunosorbent Assay. Biomicrofluidics 2014, 8, 064101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, J.; Liu, Y.; Su, L.; Zhao, D.; Zhao, L.; Zhang, X. Microfluidic Chip-Based Wearable Colorimetric Sensor for Simple and Facile Detection of Sweat Glucose. Anal. Chem. 2019, 91, 14803–14807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arora, A.; Simone, G.; Salieb-Beugelaar, G.B.; Kim, J.T.; Manz, A. Latest Developments in Micro Total Analysis Systems. Anal. Chem. 2010, 82, 4830–4847. [Google Scholar] [CrossRef] [PubMed]
- Mattio, E.; Lamadie, F.; Rodriguez-Ruiz, I.; Cames, B.; Charton, S. Photonic Lab-on-a-Chip Analytical Systems for Nuclear Applications: Optical Performance and UV–Vis–IR Material Characterization after Chemical Exposure and Gamma Irradiation. J. Radioanal. Nucl. Chem. 2020, 323, 965–973. [Google Scholar] [CrossRef]
- Raj, M.K.; Chakraborty, S. PDMS Microfluidics: A Mini Review. J. Appl. Polym. Sci. 2020, 137, 48958. [Google Scholar] [CrossRef]
- SYLGARD™ 184 Silicone Elastomer. Technical Data Sheet. Available online: https://www.dow.com/en-us/documentviewer (accessed on 15 April 2022).
- Stankova, N.E.; Atanasov, P.A.; Nikov, R.G.; Nikov, R.G.; Nedyalkov, N.N.; Stoyanchov, T.R.; Fukata, N.; Kolev, K.N.; Valova, E.I.; Georgieva, J.S. Optical properties of polydimethylsiloxane (PDMS) during nanosecond laser processing. Appl. Surf. Sci. 2016, 374, 96–103. [Google Scholar] [CrossRef]
- Song, W.; Vasdekis, A.E.; Li, Z.; Psaltis, D. Low-order distributed feedback optofluidic dye laser with reduced threshold. Appl. Phys. Lett. 2009, 94, 051117. [Google Scholar] [CrossRef] [Green Version]
- Chung, A.J.; Erickson, D. Optofluidic waveguides for reconfigurable photonic systems. Opt. Express 2011, 19, 8602–8609. [Google Scholar] [CrossRef] [Green Version]
- Carugo, D.; Lee, J.Y.; Pora, A.; Browning, R.J.; Capretto, L.; Nastruzzi, C.; Stride, E. Facile and Cost-Effective Production of Microscale PDMS Architectures Using a Combined Micromilling-Replica Moulding (ΜMi-REM) Technique. Biomed. Microdevices 2016, 18, 4. [Google Scholar] [CrossRef] [Green Version]
- Baczyński, S.; Sobotka, P.; Marchlewicz, K.; Dybko, A.; Rutkowska, K. Low-cost, widespread and reproducible mold fabrication technique for PDMS-based microfluidic photonic systems. Photonics Lett. Pol. 2020, 12, 22–24. [Google Scholar] [CrossRef]
- Venzac, B.; Deng, S.; Mahmoud, Z.; Lenferink, A.; Costa, A.; Bray, F.; Otto, C.; Rolando, C.; Le Gac, S. PDMS Curing Inhibition on 3D-Printed Molds: Why? Also, How to Avoid It? Anal. Chem. 2021, 93, 7180–7187. [Google Scholar] [CrossRef] [PubMed]
- Hwang, Y.; Paydar, O.H.; Candler, R.N. 3D Printed Molds for Non-Planar PDMS Microfluidic Channels. Sens. Actuators A Phys. 2015, 226, 137–142. [Google Scholar] [CrossRef]
- Chen, P.-C.; Zhang, R.-H.; Chen, L.-T. Using Micromachined Molds, Partial-Curing PDMS Bonding Technique, and Multiple Casting to Create Hybrid Microfluidic Chip for Microlens Array. Micromachines 2019, 10, 572. [Google Scholar] [CrossRef] [Green Version]
- Javidanbardan, A.; Azevedo, A.M.; Chu, V.; Conde, J.P. A Systematic Approach for Developing 3D High-Quality PDMS Microfluidic Chips Based on Micromilling Technology. Micromachines 2021, 13, 6. [Google Scholar] [CrossRef]
- Chudy, M.; Grabowska, I.; Ciosek, P.; Filipowicz-Szymanska, A.; Stadnik, D.; Wyzkiewicz, I.; Jedrych, E.; Juchniewicz, M.; Skolimowski, M.; Ziolkowska, K.; et al. Miniaturized Tools and Devices for Bioanalytical Applications: An Overview. Anal. Bioanal. Chem. 2009, 395, 647–668. [Google Scholar] [CrossRef]
- Wu, M.-H.; Park, C.; Whitesides, G.M. Generation of Submicrometer Structures by Photolithography Using Arrays of Spherical Microlenses. J. Colloid Interface Sci. 2003, 265, 304–309. [Google Scholar] [CrossRef]
- Tong, J.; Simmons, C.A.; Sun, Y. Precision Patterning of PDMS Membranes and Applications. J. Micromech. Microeng. 2008, 18, 037004. [Google Scholar] [CrossRef]
- Schmidtke, J.; Terentjev, E.M. Polydimethylsiloxane-Enclosed Liquid Crystal Lasers for Lab-on-Chip Applications. Appl. Phys. Lett. 2010, 96, 151111. [Google Scholar] [CrossRef]
- Wang, I.-T.; Lee, Y.-H.; Chuang, E.-Y.; Hsiao, Y.-C. Sensitive, Color-Indicating and Labeling-Free Multi-Detection Cholesteric Liquid Crystal Biosensing Chips for Detecting Albumin. Polymers 2021, 13, 1463. [Google Scholar] [CrossRef]
- Cuennet, J.G.; Vasdekis, A.E.; De Sio, L.; Psaltis, D. Optofluidic Modulator Based on Peristaltic Nematogen Microflows. Nat. Photon 2011, 5, 234–238. [Google Scholar] [CrossRef]
- Vasdekis, A.E.; Cuennet, J.G.; Psaltis, D. Liquid Crystal Optofluidics; Khoo, I.C., Ed.; SPIE Digital Library: San Diego, CA, USA, 2012; p. 847507. [Google Scholar] [CrossRef]
- Wee, D.; Hwang, S.H.; Song, Y.S.; Youn, J.R. Tunable Optofluidic Birefringent Lens. Soft Matter 2016, 12, 3868–3876. [Google Scholar] [CrossRef] [PubMed]
- d’Alessandro, A.; Asquini, R.; Chiccoli, C.; Martini, L.; Pasini, P.; Zannoni, C. Liquid Crystal Channel Waveguides: A Monte Carlo Investigation of the Ordering. Mol. Cryst. Liq. Cryst. 2015, 619, 42–48. [Google Scholar] [CrossRef]
- Asquini, R.; Chiccoli, C.; d’Alessandro, A.; Pasini, P.; Zannoni, C. Monte Carlo Study of Slot-Waveguide Liquid Crystal Phase Shifters. Mol. Cryst. Liq. Cryst. 2019, 683, 46–55. [Google Scholar] [CrossRef]
- Asquini, R.; Chiccoli, C.; Pasini, P.; Civita, L.; d’Alessandro, A. Low Power Photonic Devices Based on Electrically Controlled Nematic Liquid Crystals Embedded in Poly(Dimethylsiloxane). Liq. Cryst. 2018, 45, 2174–2183. [Google Scholar] [CrossRef]
- d’Alessandro, A.; Martini, L.; Civita, L.; Beccherelli, R.; Asquini, R. Liquid Crystal Waveguide Technologies for a New Generation of Low-Power Photonic Integrated Circuits; Chien, L.-C., Coles, H.J., Kikuchi, H., Smalyukh, I.I., Eds.; SPIE Digital Library: San Francisco, CA, USA, 2015; p. 93840L. [Google Scholar] [CrossRef]
- Asquini, R.; Martini, L.; d’Alessandro, A. Fabrication and Characterization of Liquid Crystal Waveguides in PDMS Channels for Optofluidic Applications. Mol. Cryst. Liq. Cryst. 2015, 614, 11–19. [Google Scholar] [CrossRef]
- Civita, L.; Quaranta, S.; Asquini, R.; d’Alessandro, A. Design of a Multi Mode Interferometer using LC: PDMS technology. Mol. Cryst. Liq. Cryst. 2019, 684, 58–65. [Google Scholar] [CrossRef]
- d’Alessandro, A.; Civita, L.; Asquini, R.; Chiccoli, C.; Pasini, P. Optical Waveguides and Tunable Devices Made of a Liquid Crystal Core in PDMS Channels. In Proceedings of the Liquid Crystals XXIII; Khoo, I.C., Ed.; SPIE: San Diego, CA, USA, 2019; p. 31. [Google Scholar] [CrossRef]
- Zheng, W.; Yang, L.; Lee, M. Vertical alignment of liquid crystals on polydimethylsiloxane thin films. Photonics Lett. Pol. 2011, 3, 8–10. [Google Scholar] [CrossRef]
- Zheng, W.J.; Huang, M.H. Use of polydimethylsiloxane thin film as vertical liquid crystal alignment layer. Thin Solid Film. 2012, 520, 2841–2845. [Google Scholar] [CrossRef]
- Rutkowska, K.A.; Woliński, T.R.; Asquini, R.; Civita, L.; Martini, L.; d’Alessandro, A. Electrical tuning of the LC: PDMS channels. Photonics Lett. Pol. 2017, 9, 48–50. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.; Hu, Y.-T. Orientation of liquid crystal molecules in polydimethylsiloxane micro-channels. Liq. Cryst. 2016, 43, 327–335. [Google Scholar] [CrossRef]
- Baczyński, S.; Sobotka, P.; Marchlewicz, K.; Słowikowski, M.; Juchniewicz, M.; Dybko, A.; Rutkowska, K.A. Orientation of Liquid Crystalline Molecules on PDMS Surfaces and within PDMS Microfluidic Systems. Appl. Sci. 2021, 11, 11593. [Google Scholar] [CrossRef]
- Borók, A.; Laboda, K.; Bonyár, A. PDMS Bonding Technologies for Microfluidic Applications: A Review. Biosensors 2021, 11, 292. [Google Scholar] [CrossRef] [PubMed]
- Tohnishi, M.; Matsutani, A. Surface Treatment of Polydimethylsiloxane and Glass Using Solid-Source H2O Plasma for Fabrication of Microfluidic Devices. Sens. Mater. 2021, 33, 569. [Google Scholar] [CrossRef]
- Cabrera, J.; Ruiz, M.; Fascio, M.; D’Accorso, N.; Mincheva, R.; Dubois, P.; Lizarraga, L.; Negri, R. Increased Surface Roughness in Polydimethylsiloxane Films by Physical and Chemical Methods. Polymers 2017, 9, 331. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, J.; Zhang, D.; Li, L.; Zhu, Y. Preparation and Characterization of Superhydrophobic Surface Based on Polydimethylsiloxane (PDMS). J. Adhes. Sci. Technol. 2019, 33, 1870–1881. [Google Scholar] [CrossRef]
- Kim, H.T.; Jeong, O.C. PDMS Surface Modification Using Atmospheric Pressure Plasma. Microelectron. Eng. 2011, 88, 2281–2285. [Google Scholar] [CrossRef]
- Mouquinho, A.; Saavedra, M.; Maiau, A.; Petrova, K.; Barros, M.T.; Figueirinhas, J.L.; Sotomayor, J. Films Based on New Methacrylate Monomers: Synthesis, Characterisation and Electro-Optical Properties. Mol. Cryst. Liq. Cryst. 2011, 542, 132/[654]–140/[662]. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baczyński, S.; Sobotka, P.; Marchlewicz, K.; Juchniewicz, M.; Dybko, A.; Rutkowska, K.A. Study of PDMS Microchannels for Liquid Crystalline Optofluidic Devices in Waveguiding Photonic Systems. Crystals 2022, 12, 729. https://doi.org/10.3390/cryst12050729
Baczyński S, Sobotka P, Marchlewicz K, Juchniewicz M, Dybko A, Rutkowska KA. Study of PDMS Microchannels for Liquid Crystalline Optofluidic Devices in Waveguiding Photonic Systems. Crystals. 2022; 12(5):729. https://doi.org/10.3390/cryst12050729
Chicago/Turabian StyleBaczyński, Szymon, Piotr Sobotka, Kasper Marchlewicz, Marcin Juchniewicz, Artur Dybko, and Katarzyna A. Rutkowska. 2022. "Study of PDMS Microchannels for Liquid Crystalline Optofluidic Devices in Waveguiding Photonic Systems" Crystals 12, no. 5: 729. https://doi.org/10.3390/cryst12050729
APA StyleBaczyński, S., Sobotka, P., Marchlewicz, K., Juchniewicz, M., Dybko, A., & Rutkowska, K. A. (2022). Study of PDMS Microchannels for Liquid Crystalline Optofluidic Devices in Waveguiding Photonic Systems. Crystals, 12(5), 729. https://doi.org/10.3390/cryst12050729