Low-Vacuum Pyrolysis of YBCO Films by Using Fluorine-Free Metal Organic Chemical Deposition
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. DTA/TGA Analysis of the Precursor Materials
3.2. Characteristics of the Low-Vacuum Precursor Films
3.3. Optimization of High-Temperature Heat Treatment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schemes for enhanced superconducting property in high temperature superconductor YBa2Cu3O7−x: A review. Supercond. Sci. Technol. 2017, 30, 114004. [CrossRef]
- MacManus-Driscoll, J.L.; Wimbush, S.C. Processing and application of high-temperature superconducting coated conductors. Nat. Rev. Mater. 2021, 6, 587–604. [Google Scholar] [CrossRef]
- Aytug, T.; Paranthaman, M.; Heatherly, L.; Zuev, Y.; Zhang, Y.; Kim, K.; Goyal, A.; Maroni, V.A.; Chen, Y.; Selvamanickam, V. Deposition studies and coordinated characterization of MOCVD YBCO films on IBAD-MgO templates. Supercond. Sci. Technol. 2009, 22, 015008. [Google Scholar] [CrossRef]
- Li, M.; Cayado, P.; Erbe, M.; Jung, A.; Hänisch, J.; Holzapfel, B.; Liu, Z.; Cai, C. Rapid Pyrolysis of SmBa2Cu3O7-δ Films in CSD-MOD Using Extremely-Low-Fluorine Solutions. Coating 2020, 10, 31. [Google Scholar] [CrossRef] [Green Version]
- Mikheenko, P.; Dang, V.S.; Awang Kechik, M.M.; Wang, Y.; Sarkar, A.; Tanner, J.L.; Abell, J.S.; Crisan, A. Nano Techniques for Enhancing Critical Current in Superconducting YBCO Films. J. Supercond. Nov. Magn. 2010, 24, 1059–1064. [Google Scholar] [CrossRef]
- Choi, S.M.; Lee, J.W.; Shin, G.H.; Lee, J.H.; Hong, G.W.; Moon, S.H.; Yoo, S.I. Characteristics of High-Jc GdBCO Coated Conductors Fabricated by the RCE-DR Process. IEEE Trans. Appl. Supercon. 2013, 23, 8001004. [Google Scholar] [CrossRef]
- Bruneel, E.; Rijckaert, H.; Diez Sierra, J.; De Buysser, K.; Van Driessche, I. An Evaluation of Nanoparticle Distribution in Solution-Derived YBa2Cu3O7−δ Nanocomposite Thin Films by XPS Depth Profiling in Combination with TEM Analysis. Crystal 2022, 12, 410. [Google Scholar] [CrossRef]
- Nasui, M.; Sonher, R.B.; Petrisor, T.; Varodi, S.; Pop, C.; Ciontea, L.; Petrisor, T. Development of a Fluorine-Free Polymer-Assisted-Deposition Route for YBa2Cu3O7−x Superconducting Films. Coating 2020, 10, 966. [Google Scholar] [CrossRef]
- Soler, L.; Jareno, J.; Banchewski, J.; Rasi, S.; Chamorro, N.; Guzman, R.; Yanez, R.; Mocuta, C.; Ricart, S.; Farjas, J.; et al. Ultrafast transient liquid assisted growth of high current density superconducting films. Nat. Commun. 2020, 11, 344. [Google Scholar] [CrossRef]
- Wang, W.T.; Wang, Z.; Pu, M.H.; Wang, M.J.; Zhang, X.; Lei, M.; Zhao, Y. A Novel Partial Melting Process for YBa2Cu3O7−z Superconducting Films by Fluorine-Free Polymer-Assisted Metal Organic Deposition Approach. J. Supercond. Nov. Magn. 2015, 28, 3249–3253. [Google Scholar] [CrossRef]
- Fukui, J.; Kita, R.; Miura, O. Improvement of Jc Properties for Hf and La Co-Doped Gd123 Films Fabricated by Fluorine-Free MOD Method. IEEE Trans. Appl. 2020, 30, 1–4. [Google Scholar]
- Motoki, T.; Shimoyama, J.-I.; Yamamoto, A.; Ogino, H.; Kishio, K.; Honda, G.; Nagaishi, T. Dramatic effects of chlorine doping on Jc and microstructure of fluorine-free MOD Y123 thin films. Supercond. Sci. Technol. 2014, 27, 095017. [Google Scholar] [CrossRef]
- Tang, X.; Zhao, Y.; Wu, W.; Andersen, N.H.; Grivel, J.C. High-Jc YBa2Cu3O7−x-Ag superconducting thin films synthesized through a fluorine-free MOD method. J. Eur. Ceram. Soc. 2015, 35, 1761–1769. [Google Scholar] [CrossRef]
- Chu, J.; Zhao, Y.; Khan, M.Z.; Tang, X.; Wu, W.; Shi, J.; Wu, Y.; Huhtinen, H.; Suo, H.; Jin, Z. Insight into the Interfacial Nucleation and Competitive Growth of YBa2Cu3O7−δ Films as High-Performance Coated Conductors by a Fluorine-Free Metal–Organic Decomposition Route. Cryst. Growth Des. 2019, 19, 6752–6762. [Google Scholar] [CrossRef]
- Motoki, T.; Shimoyama, J.-I.; Ogino, H.; Kishio, K.; Roh, J.; Tohei, T.; Ikuhara, Y.; Horii, S.; Doi, T.; Honda, G.; et al. Microstructures and improved Jc–H characteristics of Cl-containing YBCO thin films prepared by the fluorine-free MOD method. Supercond. Sci. Technol. 2016, 29, 015006. [Google Scholar] [CrossRef]
- Shi, J.; Zhao, Y.; Jiang, G.; Zhu, J.; Wu, Y.; Gao, Y.; Quan, X.; Yu, X.; Wu, W.; Jin, Z. Deposition of REBCO with different rare earth elements on CeO2 buffered technical substrates by fluorine-free metal organic decomposition route. J. Eur. Ceram. Soc. 2021, 41, 5223–5229. [Google Scholar] [CrossRef]
- Rasi, S.; Soler, L.; Jareño, J.; Banchewski, J.; Guzman, R.; Mocuta, C.; Kreuzer, M.; Ricart, S.; Roura-Grabulosa, P.; Farjas, J.; et al. Relevance of the Formation of Intermediate Non-Equilibrium Phases in YBa2Cu3O7–x Film Growth by Transient Liquid-Assisted Growth. J. Phys. Chem. C 2020, 124, 15574–15584. [Google Scholar] [CrossRef]
- Rasi, S.; Ricart, S.; Obradors, X.; Puig, T.; Roura, P.; Farjas, J. Thermal decomposition of yttrium propionate: Film and powder. J. Anal. Appl. Pyrol. 2018, 133, 225–233. [Google Scholar] [CrossRef]
- Rasi, S.; Silveri, F.; Ricart, S.; Obradors, X.; Puig, T.; Roura-Grabulosa, P.; Farjas, J. Thermal decomposition of CuProp2: In-situ analysis of film and powder pyrolysis. J. Anal. Appl. Pyrol. 2019, 140, 312–320. [Google Scholar] [CrossRef] [Green Version]
- Rasi, S.; Silveri, F.; Ricart, S.; Obradors, X.; Puig, T.; Roura-Grabulosa, P.; Farjas, J. Radical and oxidative pathways in the pyrolysis of a barium propionate-acetate salt. J. Anal. Appl. Pyrol. 2019, 141, 104640. [Google Scholar] [CrossRef]
- Zuo, J.L.; Zhao, Y.; Wu, W.; Chu, J.Y.; Wu, X.Y.; Zhang, Z.W.; Hong, Z.Y.; Jin, Z.J. Intermediate Phase Evolution in YBCO Superconducting Film Fabricated by Fluorine Free MOD Method. J. Inorg. Mater. 2018, 33, 773. [Google Scholar] [CrossRef]
- Yang, X.; Wang, W.T.; Liu, L.; Huo, B.L.; Wang, M.J.; Yang, G.S.; Tian, Z.J.; Xia, Y.D.; Zhao, Y. Rapid Pyrolysis of YBa2Cu3O7-δ Films by Fluorine-Free Polymer-Assisted Chemical Solution Deposition Approach. J. Supercond. Nov. Magn. 2019, 32, 3747–3753. [Google Scholar] [CrossRef]
- Chen, Z.; Maroni, V.A.; Miller, D.J.; Li, X.; Rupich, M.W.; Feenstra, R. Examination of through-thickness/through-time phase evolution during an MOD-type REBCO precursor conversion using Raman microscopy. Supercond. Sci. Technol. 2010, 23, 085006. [Google Scholar] [CrossRef]
- Lin, J.; Yang, W.; Gu, Z.; Shu, G.; Li, M.; Sang, L.; Guo, Y.; Liu, Z.; Cai, C. Improved epitaxial texture of thick YBa2Cu3O7−δ/GdBa2Cu3O7−δ films with periodic stress releasing. Supercond. Sci. Technol. 2015, 28, 045001. [Google Scholar] [CrossRef]
Institution. /Year | Substrate | Flowing Gas | Pressure in Tube Furnace | Heating Rate (°C/min) | Temperature Range (°C) | Total Pyrolysis Time (min) |
---|---|---|---|---|---|---|
Southwest Jiaotong University /2015 | LaAlO3 | Humid O2 + Ar mixture | Atmospheric pressure | 0.5 | 110–500 | >720 (con) |
University of Tokyo /2014 | SiTro3 | Humid O2 | Atmospheric pressure | —— | 500–500 | 120 |
Tokyo Metropolitan University /2020 | LaAlO3 | Air | Atmospheric pressure | —— | 600–600 | 30 |
Technical University of Denmark /2015 | LaAlO3 | Humid O2 | Atmospheric pressure | 10 | 20–450 | 43 |
Shanghai Jiao Tong University /2021 | CeO2 | Humid O2 | Atmospheric pressure | 10 | 100–500 | 40 |
University of Barcelona /2020 | LaAlO3 | Humid O2 | Atmospheric pressure | 3 | 240–500 | >120 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Cai, C.; Chu, N.; Tong, S.; Lu, Y.; Liu, Z. Low-Vacuum Pyrolysis of YBCO Films by Using Fluorine-Free Metal Organic Chemical Deposition. Crystals 2022, 12, 812. https://doi.org/10.3390/cryst12060812
Yang Z, Cai C, Chu N, Tong S, Lu Y, Liu Z. Low-Vacuum Pyrolysis of YBCO Films by Using Fluorine-Free Metal Organic Chemical Deposition. Crystals. 2022; 12(6):812. https://doi.org/10.3390/cryst12060812
Chicago/Turabian StyleYang, Zhao, Chuanbing Cai, Ningdong Chu, Shuyun Tong, Yuming Lu, and Zhiyong Liu. 2022. "Low-Vacuum Pyrolysis of YBCO Films by Using Fluorine-Free Metal Organic Chemical Deposition" Crystals 12, no. 6: 812. https://doi.org/10.3390/cryst12060812
APA StyleYang, Z., Cai, C., Chu, N., Tong, S., Lu, Y., & Liu, Z. (2022). Low-Vacuum Pyrolysis of YBCO Films by Using Fluorine-Free Metal Organic Chemical Deposition. Crystals, 12(6), 812. https://doi.org/10.3390/cryst12060812