Silver Nanoparticles Synthesized Using Eichhornia crassipes Extract from Yuriria Lagoon, and the Perspective for Application as Antimicrobial Agent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Extract Preparation
2.2. Green Synthesis of Silver Nanoparticles
2.3. Nanoparticles Characterization
2.4. Antimicrobial Activity
3. Results and Discussion
3.1. UV-VIS
3.2. TEM Results
3.3. XPS Analysis
3.4. XRD Analysis
3.5. Antibacterial Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matagne, A.; Lamotte, J.; Frere, J. Catalytic properties of Class A b-lactamases: Eficiency and diversity. J. Biochem. 1998, 330, 581–598. [Google Scholar] [CrossRef] [PubMed]
- FAO. Available online: http://www.fao.org/docrep/007/y5468s/y5468s0d.htm (accessed on 4 May 2022).
- Heinemann, J.; Ankenbauer, R.; Amabile, C. Do antibiotics maintain antibiotic resistance? Drug Discov. Today 2000, 5, 195–204. [Google Scholar] [CrossRef]
- Staggers, N.; Mckasky, T.; Braselton, N.; Kennedy, R. Nanotechnology: The coming revolution and its implications for consumers, clinicians, and informatics. Nurs. Outlook 2008, 56, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Hochella, M.F. Nanoscience and technology: The next revolution in the Earth sciences. Earth Planet. Sci. Lett. 2002, 203, 593–605. [Google Scholar] [CrossRef]
- Beumer, K. Broadening nanotechnology’s impact on development. Nat. Nanotechnol. 2016, 11, 398–400. [Google Scholar] [CrossRef]
- Lieber, C.M.; Gao, R.; Strehle, S.; Duan, X.; Tian, B.; Cohen-Karni, I.; Xie, P.; Qing, Q. Nanoscale Sensors for Intracellular and Other Applications. U.S. Patent No. 9638717 B2, 2 May 2017. [Google Scholar]
- Thirumalai Arasu, V.; Prabhu, D.; Soniya, M. Stable silver nanoparticle synthesizing methods and its applications. J. Bio. Sci. Res. 2010, 1, 259–270. [Google Scholar]
- Zhu, J.; Liao, X.; Chen, H.Y. Electrochemical preparation of silver dendrites in the presence of DNA. Mater. Res. Bull. 2001, 36, 1687–1692. [Google Scholar] [CrossRef]
- Salkar, R.A.; Jeevanandam, P.; Aruna, S.T.; Koltypin, Y.; Gedanken, A. The sonochemical preparation of amorphous silver nanoparticles. J. Mater. Chem. 1999, 9, 1333–1335. [Google Scholar] [CrossRef]
- Mandal, S.; Arumugam, S.; Pasricha, R.; Sastry, M. Silver nanoparticles of variable morphology synthesized in aqueous foams as novel templates. Bull. Mater. Sci. 2001, 28, 503–510. [Google Scholar] [CrossRef]
- Jiang, H.; Moon, K.; Zhang, Z.; Pothukuchi, S.; Wong, C.P. Variable frequency microwave synthesis of silver nanoparticles. J. Nanopart. Res. 2006, 8, 117–124. [Google Scholar] [CrossRef]
- Parashar, U.K.; Saxena, S.P.; Srivastava, A. Bioinspired synthesis of silver nanoparticles. Dig. J. Nanomat. Biostruct. 2009, 4, 159–166. [Google Scholar]
- Handy, R.D.; Henry, T.B.; Scown, T.M.; Johnston, B.D.; Tyler, C.R. Manufactured nanoparticles: Their uptake and effects on fish—A mechanistic analysis. Ecotoxicology 2008, 17, 396–409. [Google Scholar] [CrossRef] [PubMed]
- Biswas, P.; Wu, C.Y. Critical review: Nanoparticles and the environment. J. Air Waste Manag. Assoc. 2005, 55, 708–746. [Google Scholar] [CrossRef] [PubMed]
- Nowack, B.; Bucheli, T.D. Occurrence, behaviour and effects of nanoparticles in the environment. Environ. Pollut. 2007, 150, 5–22. [Google Scholar] [CrossRef]
- Sajid, M.; Llyas, M.; Basheer, C.; Tarig, M.; Daud, M.; Baig, N.; Shehzad, F. Impact of nanoparticles on human and environment: Review of toxicity factors, exposures, control strategies, and future prospects. Environ. Sci. Pollut. Res. Int. 2015, 22, 4122–4143. [Google Scholar] [CrossRef]
- Sastry, M.; Ahmad, A.; Khan, M.I.; Kumar, R. Microbial nanoparticle production. In Nanobiotechnology, 2nd ed.; Niemeyer, C.M., Mirkin, C.A., Eds.; Wiley-VCH: Weinheim, Germany, 2004; pp. 126–135. [Google Scholar]
- Bhattacharya, D.; Rajinder, G. Nanotechnology and potential of microorganisms. Crit. Rev. Biotechnol. 2005, 25, 199–204. [Google Scholar] [CrossRef]
- Mohanpuria, P.; Rana, N.K.; Yadav, S.K. Biosynthesis of nanoparticles: Technological concepts and future applications. J. Nanopart. Res. 2008, 10, 507–517. [Google Scholar] [CrossRef]
- Tippayawat, P.; Phromviyo, N.; Boueroy, P. Green synthesis of silver nanoparticles in aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity. PeerJ 2016, 19, e2589. [Google Scholar] [CrossRef]
- Ashraf, J.M.; Ansari, M.A.; Khan, H.M. Green synthesis of silver nanoparticles and characterization of their inhibitory effects on AGEs formation using biophysical techniques. Sci. Rep. 2016, 6, 20414. [Google Scholar] [CrossRef] [Green Version]
- Bagherzade, G.; Tavakoli, M.M.; Namaei, M.H. Green synthesis of silver nanoparticles using aqueous extract of saffron (Crocus sativus L.) wastages and its antibacterial activity against six bacteria. Asian Pac. J. Trop. Biomed. 2017, 7, 227–233. [Google Scholar] [CrossRef]
- Gomathi, M.; Rajkumar, P.V.; Prakasam, A.; Ravichandran, K. Green synthesis of silver nanoparticles using Datura stramonium leaf extract and assessment of their antibacterial activity. Resour. Effic. Technol. 2017, 3, 280–284. [Google Scholar] [CrossRef]
- Shankar, S.; Ahmad, A.; Sastry, M. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol. Prog. 2003, 19, 1627–1631. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Mittal, S.; Shrivastav, R.; Dass, S.; Srivastava, J.N. Biosynthesis of silver nanoparticles using Ricinus communis L. Leaf extract and its antibacterial activity. Dig. J. Nanomater. Biostructures 2012, 7, 1157–1163. [Google Scholar]
- Verdejo, E.; Palmerín, J.; Aibar, J.; Cirujeda, A.; Taberner, A.; Zaragoza, C. El Lirio de Agua Eichhornia Crassipes; Plantas Invasoras; Ministerio de Agricultura, Pesca y Alimentación: Aragón, Spain, 2006.
- CABI. Available online: http://www.cabi.org/isc/datasheet/20544 (accessed on 4 May 2022).
- Gakwavu, R. Zinc and chromium removal mechanisms from industrial wastewater by using water hyacinth, Eichhornia crassipes (mart.) Solms. Appl. Ecol. Environ. Res. 2012, 10, 493–502. [Google Scholar] [CrossRef]
- Young-Hyun, L. Cellulose Structure Modification and Hydrolysis, 1st ed.; Wiley: New York, NY, USA, 1986; pp. 1–18. [Google Scholar]
- Hublikar, L.V.; Ganachari, S.V.; Raghavendra, N.; Patil, V.B.; Banapurmath, N.R. Green synthesis silver nanoparticles via Eichhornia Crassipes leaves extract and their applications. Curr. Res. Green Sustain. Chem. 2021, 4, 100212. [Google Scholar] [CrossRef]
- Mittal, A.; Chisti, Y.; Banerjee, U. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 2013, 31, 346–356. [Google Scholar] [CrossRef]
- Fayaz, A.; Balaji, K.; Girilal, M.; Yadav, R.; Kalaichelvan, P.; Venketesan, R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram-positive and gram-negative bacteria. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 103–109. [Google Scholar] [CrossRef]
- Bagjerzade, M. Silver nanoparticles and silver ions: Oxidative stress responses and toxicity in potato (Solanum tuberosum L.) grown in vitro. Hortic. Environ. Biotechnol. 2016, 57, 544–553. [Google Scholar]
- Amin, M.; Anwar, F.; Janjua, M.; Iqbal, M. Green Synthesis of Silver Nanoparticles through Reduction with Solanum xanthocarpum L. Berry Extract: Characterization, Antimicrobial and Urease Inhibitory Activities against Helicobacter pylori. Int. J. Mol. Sci. 2012, 13, 9923–9941. [Google Scholar] [CrossRef]
- Vadlapudi, V.; Amanchy, R. Phytofabrication of silver nanoparticles using Myriostachya wightiana as a novel bioresource, and evaluation of their biological activities. Braz. Arch. Biol. Technol. 2017, 60, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Gunnar, S. ESCA Studies of Ag, Ag2O and AgO. Acta Chem. Scand. 1973, 27, 2623–2633. [Google Scholar]
- Furno, F.; Morley, K.; Wong, B.; Sharp, B.; Arnold, P.; Howdle, S. Silver nanoparticles and polymeric medical devices: A new approach to prevention of infection. J. Antimicrob. Chemother. 2004, 54, 1019–1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taufik, A.; Saleh, R. The influence of graphene on silver oxide synthesis through microwave assisted method. AIP Conf. Proc. 2018, 2023, 0200181–0200184. [Google Scholar]
- Hamouda, T.; Myc, A.; Donovan, B.; Shih, A.; Reuter, J.; Baker, J. A novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial activity against bacteria, enveloped viruses and fungi. Microbiol. Res. 2000, 156, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ayala, N.V. Nanopartículas de Plata Como Microbicidas: Actividad y Mecanismos de Acción Contra la Infección por el Virus de Inmunodeficiencia Humana (VIH) y Diferentes Bacterias Resistentes a Antibióticos. Ph.D. Thesis, Universidad Autónoma de Nuevo León, Monterrey, Mexico, 2010. [Google Scholar]
- Kim, J.; Kuk, E.; Yu, K.; Kim, J.; Park, S.; Lee, H.; Kim, S.; Park, K.; Park, J.; Hwang, C.; et al. Antimicrobial effects of silver nanoparticles. Nanomed. J. 2007, 1, 95–101. [Google Scholar] [CrossRef]
- Dragieva, I.; Stoeva, S.; Stoimenov, P.; Pavlikianov, E.; Klabunde, K. Complex formation in solutions for chemical synthesis of nanoscaled particles prepared by borohydride reduction process. Nanostruct. Mater. 1999, 12, 267–270. [Google Scholar] [CrossRef]
- Russel, A.; Hugo, W. Antimicrobial activity and action of silver. Prog. Med. Chem. 1994, 31, 351–370. [Google Scholar]
- Marsh, P. Microbiological aspects of the chemical control of plaque and gingivitis. J. Dent. Res. 1992, 71, 1431–1438. [Google Scholar] [CrossRef]
- Chandrasekharan, S.; Chinnasamy, G.; Bhatnagar, S. Sustainable phyto-fabrication of silver nanoparticles using Gmelina arborea exhibit antimicrobial and biofilm inhibition activity. Sci. Rep. 2022, 12, 156. [Google Scholar] [CrossRef]
- Vinodhini, S.; Vithiya, B.S.M.; Prasad, T.A.A. Green synthesis of silver nanoparticles by employing the Allium fistulosum, Tabernaemontana divaricate and Basella alba leaf extracts for antimicrobial applications. J. King Saud Univ. Sci. 2022, 34, 101939. [Google Scholar] [CrossRef]
Temperature (°C) | ||||
---|---|---|---|---|
Time (min) | 75 | 80 | 85 | 95 |
0 | 1.33 ± 0.47 | 0.92 ± 0.11 | 1.23 ± 0.2 | 1.87 ± 0.12 |
30 | 1.5 ± 0.4 | 1.13 ± 0.18 | 1.16 ± 0.23 | 2.03 ± 0.23 |
60 | 1.66 ± 0.23 | 1.06 ± 0.09 | 1.3 ± 0.16 | 2.18 ± 0.23 |
120 | 1.33 ± 0.47 | 1.36 ± 0.44 | 1.1 ± 0.14 | 2.3 ± 0.16 |
180 | 1.16 ± 0.23 | 0.73 ± 0.3 | 0.58 ± 0.11 | 0.92 ± 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Espinosa, J.C.; Ramírez-Morales, M.A.; Carrera-Cerritos, R. Silver Nanoparticles Synthesized Using Eichhornia crassipes Extract from Yuriria Lagoon, and the Perspective for Application as Antimicrobial Agent. Crystals 2022, 12, 814. https://doi.org/10.3390/cryst12060814
Martínez-Espinosa JC, Ramírez-Morales MA, Carrera-Cerritos R. Silver Nanoparticles Synthesized Using Eichhornia crassipes Extract from Yuriria Lagoon, and the Perspective for Application as Antimicrobial Agent. Crystals. 2022; 12(6):814. https://doi.org/10.3390/cryst12060814
Chicago/Turabian StyleMartínez-Espinosa, Juan Carlos, María Antonieta Ramírez-Morales, and Raúl Carrera-Cerritos. 2022. "Silver Nanoparticles Synthesized Using Eichhornia crassipes Extract from Yuriria Lagoon, and the Perspective for Application as Antimicrobial Agent" Crystals 12, no. 6: 814. https://doi.org/10.3390/cryst12060814
APA StyleMartínez-Espinosa, J. C., Ramírez-Morales, M. A., & Carrera-Cerritos, R. (2022). Silver Nanoparticles Synthesized Using Eichhornia crassipes Extract from Yuriria Lagoon, and the Perspective for Application as Antimicrobial Agent. Crystals, 12(6), 814. https://doi.org/10.3390/cryst12060814