2D Microporous Covalent Organic Frameworks as Cobalt Nanoparticle Supports for Electrocatalytic Hydrogen Evolution Reaction
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Instruments
2.2. Synthesis of JUC−624
2.3. Synthesis of JUC−625
2.4. Synthesis of Co(II)NPs@JUC−624 and Co(II)NPs@JUC−625
2.5. Synthesis of CoNPs@JUC−624 and CoNPs@JUC−625
2.6. Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chakraborty, D.; Nandi, S.; Mullangi, D.; Haldar, S.; Vinod, C.P.; Vaidhyanathan, R. Cu/Cu2O nanoparticles supported on a phenol-pyridyl COF as a heterogeneous catalyst for the synthesis of unsymmetrical diynes via Glaser-Hay coupling. ACS Appl. Mater. Interfaces 2019, 11, 15670–15679. [Google Scholar] [CrossRef]
- Guo, Y.; Yang, S.; Xu, Q.; Wu, P.; Jiang, Z.; Zeng, G. Hierarchical confinement of PtZn alloy nanoparticles and single-dispersed Zn atoms on COF@MOF-derived carbon towards efficient oxygen reduction reaction. J. Mater. Chem. A 2021, 9, 13625–13630. [Google Scholar] [CrossRef]
- Hu, H.; Yan, Q.; Ge, R.; Gao, Y. Covalent organic frameworks as heterogeneous catalysts. Chin. J. Catal. 2018, 39, 1167–1179. [Google Scholar] [CrossRef]
- Huang, J.; Liu, X.; Zhang, W.; Liu, Z.; Zhong, H.; Shao, B.; Liang, Q.; Liu, Y.; Zhang, W.; He, Q. Functionalization of covalent organic frameworks by metal modification: Construction, properties and applications. Chem. Eng. J. 2021, 404, 127136. [Google Scholar] [CrossRef]
- Kalidindi, S.B.; Fischer, R.A. Covalent organic frameworks and their metal nanoparticle composites: Prospects for hydrogen storage. Phys. Status Solidi B 2013, 250, 1119–1127. [Google Scholar] [CrossRef]
- Liu, J.; He, K.; Wu, W.; Song, T.B.; Kanatzidis, M.G. In situ synthesis of highly dispersed and ultrafine metal nanoparticles from chalcogels. J. Am. Chem. Soc. 2017, 139, 2900–2903. [Google Scholar] [CrossRef]
- Ma, Y.; Kuang, X.; Deng, X.; Zi, B.; Zeng, J.; Zhang, J.; Zhu, Z.; Zhang, Y.; Liu, Q. The recent research progress and application of nanoparticles and ions supporting by covalent organic frameworks. Microporous Mesoporous Mater. 2022, 335, 111701. [Google Scholar] [CrossRef]
- Roy, S.; Rao, A.; Devatha, G.; Pillai, P.P. Revealing the role of electrostatics in gold-nanoparticle-catalyzed reduction of charged substrates. ACS Catal. 2017, 7, 7141–7145. [Google Scholar] [CrossRef]
- Tao, R.; Shen, X.; Hu, Y.; Kang, K.; Zheng, Y.; Luo, S.; Yang, S.; Li, W.; Lu, S.; Jin, Y.; et al. Phosphine-based covalent organic framework for the controlled synthesis of broad-scope ultrafine nanoparticles. Small 2020, 16, e1906005. [Google Scholar] [CrossRef]
- Cote, A.P.; Benin, A.I.; Ockwig, N.W.; O′Keeffe, M.; Matzger, A.J.; Yaghi, O.M. Porous, crystalline, covalent organic frameworks. Science 2005, 310, 1166–1170. [Google Scholar] [CrossRef] [Green Version]
- Gao, C.; Li, J.; Yin, S.; Sun, J.; Wang, C. Twist building blocks from planar to tetrahedral for the synthesis of covalent organic frameworks. J. Am. Chem. Soc. 2020, 142, 3718–3723. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Li, H.; Ma, Y.; Xue, M.; Fang, Q.; Yan, Y.; Valtchev, V.; Qiu, S. Chemically stable polyarylether-based covalent organic frameworks. Nat. Chem. 2019, 11, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Chang, J.; Li, S.; Guan, X.; Li, D.; Li, C.; Tang, L.; Xue, M.; Yan, Y.; Valtchev, V.; et al. Three-dimensional tetrathiafulvalene-based covalent organic frameworks for tunable electrical conductivity. J. Am. Chem. Soc. 2019, 141, 13324–13329. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ding, J.; Guan, X.; Chen, F.; Li, C.; Zhu, L.; Xue, M.; Yuan, D.; Valtchev, V.; Yan, Y.; et al. Three-dimensional large-pore covalent organic framework with stp topology. J. Am. Chem. Soc. 2020, 142, 13334–13338. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, Y.; Li, H.; Guan, X.; Zhu, L.; Xue, M.; Yan, Y.; Valtchev, V.; Qiu, S.; Fang, Q. Ambient aqueous-phase synthesis of covalent organic frameworks for degradation of organic pollutants. Chem. Sci. 2019, 10, 10815–10820. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Liu, X.; Guan, X.; Li, H.; Yusran, Y.; Xue, M.; Fang, Q.; Yan, Y.; Qiu, S.; Valtchev, V. One-pot cascade syntheses of microporous and mesoporous pyrazine-linked covalent organic frameworks as Lewis-acid catalysts. Dalton. Trans. 2019, 48, 7352–7357. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Li, H.; Guan, X.; Xue, M.; Yan, Y.; Valtchev, V.; Qiu, S.; Fang, Q. Three-dimensional mesoporous covalent organic frameworks through steric hindrance engineering. J. Am. Chem. Soc. 2020, 142, 3736–3741. [Google Scholar] [CrossRef]
- Xu, F.; Xu, H.; Chen, X.; Wu, D.; Wu, Y.; Liu, H.; Gu, C.; Fu, R.; Jiang, D. Radical covalent organic frameworks: A general strategy to immobilize open-accessible polyradicals for high-performance capacitive energy storage. Angew. Chem. Int. Ed. 2015, 54, 6814–6818. [Google Scholar] [CrossRef]
- Yusran, Y.; Fang, Q.; Valtchev, V. Electroactive covalent organic frameworks: Design, synthesis, and applications. Adv. Mater. 2020, 32, e2002038. [Google Scholar] [CrossRef]
- Yusran, Y.; Li, H.; Guan, X.; Li, D.; Tang, L.; Xue, M.; Zhuang, Z.; Yan, Y.; Valtchev, V.; Qiu, S.; et al. Exfoliated mesoporous 2D covalent organic frameworks for high-rate electrochemical double-layer capacitors. Adv. Mater. 2020, 32, e1907289. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Su, J.; Furukawa, H.; Yun, Y.; Gandara, F.; Duong, A.; Zou, X.; Yaghi, O.M. Single-crystal structure of a covalent organic framework. J. Am. Chem. Soc. 2013, 135, 16336–16339. [Google Scholar] [CrossRef]
- Jin, H.; Zhang, C.; Liu, P.; Ge, X.; Zhou, S. Covalent organic framework-supported Pd nanoparticles: An efficient and reusable heterogeneous catalyst for Suzuki–Miyaura coupling reactions. Appl. Organomet. Chem. 2022, 36, e6642. [Google Scholar] [CrossRef]
- Lin, A.; Ibrahim, A.A.; Arab, P.; El-Kaderi, H.M.; El-Shall, M.S. Palladium nanoparticles supported on Ce-metal-organic framework for efficient CO oxidation and low-temperature CO2 Capture. ACS Appl. Mater. Interfaces 2017, 9, 17961–17968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, S.; Hu, Y.; Wan, S.; McCaffrey, R.; Jin, Y.; Gu, H.; Zhang, W. Synthesis of ultrafine and highly dispersed metal nanoparticles confined in a thioether-containing covalent organic framework and their catalytic applications. J. Am. Chem. Soc. 2017, 139, 17082–17088. [Google Scholar] [CrossRef] [PubMed]
- Mullangi, D.; Chakraborty, D.; Pradeep, A.; Koshti, V.; Vinod, C.P.; Panja, S.; Nair, S.; Vaidhyanathan, R. Highly stable COF-supported Co/Co(OH)2 nanoparticles heterogeneous catalyst for reduction of nitrile/nitro compounds under mild conditions. Small 2018, 14, e1801233. [Google Scholar] [CrossRef]
- Niu, L.; Zhao, X.; Tang, Z.; Wu, F.; Lei, Q.; Wang, J.; Wang, X.; Liang, W.; Wang, X. Solid-solid synthesis of covalent organic framework as a support for growth of controllable ultrafine Au nanoparticles. Sci. Total Environ. 2022, 835, 155423. [Google Scholar] [CrossRef]
- Wang, J.S.; Jin, F.Z.; Ma, H.C.; Li, X.B.; Liu, M.Y.; Kan, J.L.; Chen, G.J.; Dong, Y.B. Au@Cu(II)-MOF: Highly efficient bifunctional heterogeneous catalyst for successive oxidation-condensation reactions. Inorg. Chem. 2016, 55, 6685–6691. [Google Scholar] [CrossRef]
- Zhang, L.; Bu, R.; Liu, X.-Y.; Mu, P.-F.; Gao, E.-Q. Schiff-base molecules and COFs as metal-free catalysts or silver supports for carboxylation of alkynes with CO2. Green Chem. 2021, 23, 7620–7629. [Google Scholar] [CrossRef]
- Zhang, Q.-P.; Sun, Y.-l.; Cheng, G.; Wang, Z.; Ma, H.; Ding, S.-Y.; Tan, B.; Bu, J.-h.; Zhang, C. Highly dispersed gold nanoparticles anchoring on post-modified covalent organic framework for catalytic application. Chem. Eng. J. 2020, 391, 123471. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, Y.; Huang, W.; Wang, Y.; Hu, X. A novel AuNPs-doped COFs composite as electrochemical probe for chlorogenic acid detection with enhanced sensitivity and stability. Sens. Actuators B Chem. 2018, 276, 362–369. [Google Scholar] [CrossRef]
- Cai, S.-L.; Zhang, K.; Tan, J.-B.; Wang, S.; Zheng, S.-R.; Fan, J.; Yu, Y.; Zhang, W.-G.; Liu, Y. Rationally designed 2D covalent organic framework with a brick-wall topology. ACS Macro Lett. 2016, 5, 1348–1352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalapati, S.; Addicoat, M.; Jin, S.; Sakurai, T.; Gao, J.; Xu, H.; Irle, S.; Seki, S.; Jiang, D. Rational design of crystalline supermicroporous covalent organic frameworks with triangular topologies. Nat. Commun. 2015, 6, 7786. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.Q.; Liang, R.R.; Zhan, T.G.; Qi, Q.Y.; Zhao, X. Construction of 2D covalent organic frameworks by taking advantage of the variable orientation of imine bonds. Chem. Commun. 2017, 53, 2431–2434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.; Mao, H.; Matheu, R.; Reimer, J.A.; Alshmimri, S.A.; Alshihri, S.; Yaghi, O.M. Reticular synthesis of multinary covalent organic frameworks. J. Am. Chem. Soc. 2019, 141, 11420–11424. [Google Scholar] [CrossRef] [Green Version]
- Ding, S.Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W.G.; Su, C.Y.; Wang, W. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction. J. Am. Chem. Soc. 2011, 133, 19816–19822. [Google Scholar] [CrossRef]
- Gao, Q.; Li, X.; Ning, G.-H.; Xu, H.-S.; Liu, C.; Tian, B.; Tang, W.; Loh, K.P. Covalent organic framework with frustrated bonding network for enhanced carbon dioxide storage. Chem. Mater. 2018, 30, 1762–1768. [Google Scholar] [CrossRef]
- Li, L.; Yun, Q.; Zhu, C.; Sheng, G.; Guo, J.; Chen, B.; Zhao, M.; Zhang, Z.; Lai, Z.; Zhang, X.; et al. Isoreticular series of two-dimensional covalent organic frameworks with the kgd topology and controllable micropores. J. Am. Chem. Soc. 2022, 144, 6475–6482. [Google Scholar] [CrossRef]
- Lu, C.; Li, Y.; Wang, L.M.; Yan, H.J.; Chen, L.; Wang, D. Rational design of two-dimensional covalent tilings using a C6-symmetric building block via on-surface Schiff base reaction. Chem. Commun. 2019, 55, 1326–1329. [Google Scholar] [CrossRef]
- Patra, B.C.; Khilari, S.; Manna, R.N.; Mondal, S.; Pradhan, D.; Pradhan, A.; Bhaumik, A. A Metal-Free Covalent Organic Polymer for Electrocatalytic Hydrogen Evolution. ACS Catal. 2017, 7, 6120–6127. [Google Scholar]
- Zhao, Q.; Chen, S.; Ren, H.; Chen, C.; Yang, W. Ruthenium Nanoparticles Confined in Covalent Organic Framework/Reduced Graphene Oxide As Electrocatalyst toward Hydrogen Evolution Reaction in Alkaline Media. Ind. Eng. Chem. Research 2021, 60, 11070–11078. [Google Scholar]
- Zhou, D.; Tan, X.; Wu, H.; Tian, L.; Li, M. Synthesis of C−C Bonded Two-Dimensional Conjugated Covalent Organic Framework Films by Suzuki Polymerization on a Liquid–Liquid Interface. Angew Chem Int Ed Engl. 2019, 58, 1376–1381. [Google Scholar]
- Maiti, S.; Chowdhury, A.R.; Das, A.K. Electrochemically Facile Hydrogen Evolution Using Ruthenium Encapsulated Two Dimensional Covalent Organic Framework (2D COF). ChemNanoMat 2019, 6, 99–106. [Google Scholar]
- Ruidas, S.; Mohanty, B.; Bhanja, P.; Erakulan, E.S.; Thapa, R.; Das, P.; Chowdhury, A.; Mandal, S.K.; Jena, B.K.; Bhaumik, A. Metal-Free Triazine-Based 2D Covalent Organic Framework for Efficient H2 Evolution by Electrochemical Water Splittin. ChemSusChem 2021, 14, 5057–5064. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.; Liao, L.; Zhang, Z.; Yusran, Y.; Wang, R.; Fang, J.; Liu, Y.; Hou, Y.; Wang, Y.; Fang, Q. 2D Microporous Covalent Organic Frameworks as Cobalt Nanoparticle Supports for Electrocatalytic Hydrogen Evolution Reaction. Crystals 2022, 12, 880. https://doi.org/10.3390/cryst12070880
Song J, Liao L, Zhang Z, Yusran Y, Wang R, Fang J, Liu Y, Hou Y, Wang Y, Fang Q. 2D Microporous Covalent Organic Frameworks as Cobalt Nanoparticle Supports for Electrocatalytic Hydrogen Evolution Reaction. Crystals. 2022; 12(7):880. https://doi.org/10.3390/cryst12070880
Chicago/Turabian StyleSong, Jialong, Li Liao, Zerong Zhang, Yusran Yusran, Rui Wang, Jing Fang, Yaozu Liu, Yu Hou, Yujie Wang, and Qianrong Fang. 2022. "2D Microporous Covalent Organic Frameworks as Cobalt Nanoparticle Supports for Electrocatalytic Hydrogen Evolution Reaction" Crystals 12, no. 7: 880. https://doi.org/10.3390/cryst12070880
APA StyleSong, J., Liao, L., Zhang, Z., Yusran, Y., Wang, R., Fang, J., Liu, Y., Hou, Y., Wang, Y., & Fang, Q. (2022). 2D Microporous Covalent Organic Frameworks as Cobalt Nanoparticle Supports for Electrocatalytic Hydrogen Evolution Reaction. Crystals, 12(7), 880. https://doi.org/10.3390/cryst12070880