Through Diffusion Measurements of Molecules to a Numerical Model for Protein Crystallization in Viscous Polyethylene Glycol Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Protein Samples
2.3. Protein Labeling
2.4. FCS Measurements
2.5. Viscosity Measurements
2.6. Crystallization
2.7. X-ray Diffraction Experiment
3. Results and Discussion
3.1. Macroviscosity (ηmacro) of PEG Solutions
3.2. Diffusion Times (τD) of Compounds, Peptides, and Proteins in Viscous PEG Solutions
3.3. Quantitative Approximation of the Anomalous Diffusion
3.4. Simulation of the Diffusion Processes in the Counter Diffusion Chamber
3.5. Quality of Crystals Grown in Viscous PEG Solvents Using Counter-Diffusion Systems
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McPherson, A.; Gavira, J.A. Introduction to protein crystallization. Acta Crystallogr. F Struct. Biol. Commun. 2014, 70, 2–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McPherson, A.; Cudney, B. Optimization of crystallization conditions for biological macromolecules. Acta Crystallogr. F Struct. Biol. Commun. 2014, 70, 1445–1467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holcomb, J.; Spellmon, N.; Zhang, Y.; Doughan, M.; Li, C.; Yang, Z. Protein crystallization: Eluding the bottleneck of X-ray crystallography. AIMS Biophys. 2017, 4, 557–575. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Ruiza, J.M.; Novella, M.L.; Moreno, R.; Gavira, J.A. Agarose as crystallization media for proteins I: Transport processes. J. Cryst. Growth 2001, 232, 165–172. [Google Scholar] [CrossRef]
- Gavira, J.A.; Cera-Manjarres, A.; Ortiz, K.; Mendez, J.; Jimenez-Torres, J.A.; Patino-Lopez, L.D.; Torres-Lugo, M. Use of Cross-Linked Poly(ethylene glycol)-Based Hydrogels for Protein Crystallization. Cryst. Growth Des. 2014, 14, 3239–3248. [Google Scholar] [CrossRef]
- Weber, P.; Pissis, C.; Navaza, R.; Mechaly, A.E.; Saul, F.; Alzari, P.M.; Haouz, A. High-Throughput Crystallization Pipeline at the Crystallography Core Facility of the Institut Pasteur. Molecules 2019, 24, 4451. [Google Scholar] [CrossRef] [Green Version]
- Lieske, J.; Cerv, M.; Kreida, S.; Komadina, D.; Fischer, J.; Barthelmess, M.; Fischer, P.; Pakendorf, T.; Yefanov, O.; Mariani, V.; et al. On-chip crystallization for serial crystallography experiments and on-chip ligand-binding studies. IUCrJ 2019, 6, 714–728. [Google Scholar] [CrossRef] [Green Version]
- De Wijn, R.; Hennig, O.; Roche, J.; Engilberge, S.; Rollet, K.; Fernandez-Millan, P.; Brillet, K.; Betat, H.; Morl, M.; Roussel, A.; et al. A simple and versatile microfluidic device for efficient biomacromolecule crystallization and structural analysis by serial crystallography. IUCrJ 2019, 6, 454–464. [Google Scholar] [CrossRef]
- Garcia-Ruiz, J.M.; Moreno, A. Investigations on protein crystal growth by the gel acupuncture method. Acta Crystallogr. D Struct. Biol. Commun. 1994, D50, 484–490. [Google Scholar] [CrossRef]
- Hashizume, Y.; Inaka, K.; Furubayashi, N.; Kamo, M.; Takahashi, S.; Tanaka, H. Methods for Obtaining Better Diffractive Protein Crystals: From Sample Evaluation to Space Crystallization. Crystals 2020, 10, 78. [Google Scholar] [CrossRef] [Green Version]
- Otalora, F.; Garcia-Ruiz, J.M. Computer model of the diffusion/ reaction interplay in the gel acupuncture method. J. Cryst. Growth 1996, 169, 361–367. [Google Scholar] [CrossRef]
- Garcia-Ruiz, J.M.; Otalora, F.; Garcia-Caballero, A. The role of mass transport in protein crystallization. Acta Crystallogr. F Struct. Biol. Commun. 2016, 72, 96–104. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, H.; Inaka, K.; Sugiyama, S.; Takahashi, S.; Sano, S.; Sato, M.; Yoshitomi, S. A simplified counter diffusion method combined with a 1D simulation program for optimizing crystallization conditions. J. Synchrotron Radiat. 2004, 11, 45–48. [Google Scholar] [CrossRef]
- Liu, J.; Wu, S.; Cao, D.; Zhang, L. Effects of pressure on structure and dynamics of model elastomers: A molecular dynamics study. J. Chem. Phys. 2008, 129, 154905. [Google Scholar] [CrossRef]
- Li, C.; Wang, Y.; Pielak, G.J. Translational and rotational diffusion of a small globular protein under crowded conditions. J. Phys. Chem. B 2009, 113, 13390–13392. [Google Scholar] [CrossRef]
- Tanaka, H.; Takahashi, S.; Yamanaka, M.; Fukuyama, S.; Sano, S.; Motohara, M.; Kobayashi, T.; Yoshitomi, S.; Tanaka, T. Diffusion Coefficient of the Protein in Various Crystallization Solutions: The Key to Growing High-quality Crystals in Space. Microgravity Sci. Technol. 2006, 18, 91–94. [Google Scholar] [CrossRef]
- Holyst, R.B.A.; Szymanski, J.; Wilk, A.; Patkowski, A.; Gapinski, J.; Zywocinski, A.; Kalwarczyk, T.; Kalwarczyk, E.; Tabaka, M. Scaling form of viscosity at all length-scales in poly(ethylene glycol) solutions studied by fluorescence correlation spectroscopy and capillary electrophoresis. Phys. Chem. Chem. Phys. 2009, 11, 9025–9032. [Google Scholar] [CrossRef]
- Haustein, E.; Schwille, P. Fluorescence correlation spectroscopy: Novel variations of an established technique. Annu. Rev. Biophys. Biomol. Struct. 2007, 36, 151–169. [Google Scholar] [CrossRef] [Green Version]
- Kigawa, T.; Yabuki, T.; Yoshida, Y.; Tsutsui, M.; Ito, Y.; Shibata, T.; Yokoyama, S. Cell-free production and stable-isotope labeling of milligram quantities of proteins. FEBS Lett. 1999, 442, 15–19. [Google Scholar] [CrossRef] [Green Version]
- Kigawa, T. Cell-free protein production system with the E. coli crude extract for determination of protein folds. Methods Mol. Biol. 2010, 607, 101–111. [Google Scholar] [CrossRef]
- Kigawa, T.; Yabuki, T.; Matsuda, N.; Matsuda, T.; Nakajima, R.; Tanaka, A.; Yokoyama, S. Preparation of Escherichia coli cell extract for highly productive cell-free protein expression. J. Struct. Funct. Genom. 2004, 5, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Umehara, T.; Nakano, K.; Jang, M.K.; Shirouzu, M.; Morita, S.; Uda-Tochio, H.; Hamana, H.; Terada, T.; Adachi, N.; et al. Crystal structure of the human BRD2 bromodomain: Insights into dimerization and recognition of acetylated histone H4. J. Biol. Chem. 2007, 282, 4193–4201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuganezawa, K.; Watanabe, H.; Parker, L.; Yuki, H.; Taruya, S.; Nakagawa, Y.; Kamei, D.; Mori, M.; Ogawa, N.; Tomabechi, Y.; et al. A novel Pim-1 kinase inhibitor targeting residues that bind the substrate peptide. J. Mol. Biol. 2012, 417, 240–252. [Google Scholar] [CrossRef]
- Tsuganezawa, K.; Shinohara, Y.; Ogawa, N.; Tsuboi, S.; Okada, N.; Mori, M.; Yokoyama, S.; Noda, N.N.; Inagaki, F.; Ohsumi, Y.; et al. Two-colored fluorescence correlation spectroscopy screening for LC3-P62 interaction inhibitors. J. Biomol. Screen. 2013, 18, 1103–1109. [Google Scholar] [CrossRef] [Green Version]
- Yamanaka, M.; Inaka, K.; Furubayashi, N.; Matsushima, M.; Takahashi, S.; Tanaka, H.; Sano, S.; Sato, M.; Kobayashi, T.; Tanaka, T. Optimization of salt concentration in PEG-based crystallization solutions. J. Synchrotron Radiat. 2011, 18, 84–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Battye, T.G.; Kontogiannis, L.; Johnson, O.; Powell, H.R.; Leslie, A.G. iMOSFLM: A new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr. D Biol. Crystallogr. 2011, 67, 271–281. [Google Scholar] [CrossRef] [Green Version]
- Evans, P.R.; Murshudov, G.N. How good are my data and what is the resolution? Acta Crystallogr. D Biol. Crystallogr. 2013, 69, 1204–1214. [Google Scholar] [CrossRef]
- Winn, M.D.; Ballard, C.C.; Cowtan, K.D.; Dodson, E.J.; Emsley, P.; Evans, P.R.; Keegan, R.M.; Krissinel, E.B.; Leslie, A.G.; McCoy, A.; et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 2011, 67, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.; Zhang, G. Scaling for sedimentation and diffusion of poly(ethylene glycol) in water. J. Phys. Chem. B 2009, 113, 12462–12465. [Google Scholar] [CrossRef]
- Vitagliano, V.; Lyons, A. Diffusion coefficients for aqueous solutions of sodium chloride and barium Chroride. J. Am. Chem. Soc. 1955, 78, 1549–1552. [Google Scholar] [CrossRef]
- Dubin, S.B.; Clark, N.A.; Benedek, G.B. Measurement of the rotational diffusion coefficient of lysozyme by depolarized light scattering: Configration of lysozyme in solution. J. Chem. Phys. 1971, 54, 5158. [Google Scholar] [CrossRef]
- Heras, B.; Edeling, M.A.; Byriel, K.A.; Jones, A.; Raina, S.; Martin, J.L. Dehydration converts DsbG crystal diffraction from low to high resolution. Structure 2003, 11, 139–145. [Google Scholar] [CrossRef]
- Manuel Garcia-Ruiz, J. Nucleation of protein crystals. J. Struct. Biol. 2003, 142, 22–31. [Google Scholar] [CrossRef]
- Tanigawa, N.T.S.; Yan, B.; Kamo, M.; Furubayashi, N.; Kubota, K.; Inaka, K.; Tanaka, H. Novel Device and Strategy for Growing Large, High-Quality Protein Crystals by Controlling Crystallization Conditions. Crystals 2021, 11, 1311. [Google Scholar] [CrossRef]
- Majeed, S.; Ofek, G.; Belachew, A.; Huang, C.C.; Zhou, T.; Kwong, P.D. Enhancing protein crystallization through precipitant synergy. Structure 2003, 11, 1061–1070. [Google Scholar] [CrossRef]
- Arai, S.; Chatake, T.; Suzuki, N.; Mizuno, H.; Niimura, N. More rapid evaluation of biomacromolecular crystals for diffraction experiments. Acta Crystallogr. D Biol. Crystallogr. 2004, 60, 1032–1039. [Google Scholar] [CrossRef]
- Wuttke, J. Multiple Bragg reflection by a thick mosaic crystal. Acta Crystallogr. A Found. Adv. 2014, 70, 429–440. [Google Scholar] [CrossRef] [Green Version]
- Vekilov, P.G.; Alexander, J.I.; Rosenberger, F. Nonlinear response of layer growth dynamics in the mixed kinetics-bulk-transport regime. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 1996, 54, 6650–6660. [Google Scholar] [CrossRef]
- Gliko, O.; Booth, N.A.; Vekilov, P.G. Step bunching in a diffusion-controlled system: Phase-shifting interferometry investigation of ferritin. Acta Crystallogr. D Biol. Crystallogr. 2002, 58, 1622–1627. [Google Scholar] [CrossRef]
- Bhat, R.; Timasheff, S.N. Steric exclusion is the principal source of the preferential hydration of proteins in the presence of polyethylene glycols. Protein Sci. 1992, 1, 1133–1143. [Google Scholar] [CrossRef] [Green Version]
MW of PEGs | Viscosity of PEG Solution (mPa·s) | |||||
---|---|---|---|---|---|---|
Concentrations of PEG Solution * (w/v%) | ||||||
1 | 2 | 5 | 10 | 15 | 20 | |
1000 | 1.25 | 1.34 | 1.58 | 2.13 | 2.88 | 4.00 |
3350 | 1.33 | 1.44 | 1.99 | 3.53 | 5.83 | 8.86 |
6000 | 1.45 | 1.66 | 2.58 | 5.05 | 8.80 | 15.40 |
10,000 | 1.55 | 1.91 | 3.28 | 7.53 | 14.0 | 26.00 |
20,000 | 1.64 | 2.28 | 4.71 | 12.20 | 26.90 | 52.30 |
Solute | M.W. | k4 | RSP | k2 * |
---|---|---|---|---|
TAMRA | 528.0 | 0.285 | 0.672 | 0.91 |
ALEXA642 | 1155.1 | 0.256 | 1.381 | 0.91 |
10-merTAMRA | 1572.6 | 0.236 | 1.289 | 0.89 |
16-mer TAMRA | 2346.6 | 0.213 | 2.437 | 0.90 |
Brd2 | 16,500.0 | 0.150 | 18.460 | 0.91 |
secernin-1 | 48,500.0 | 0.126 | 138.800 | 0.88 |
ALEXA-IgG | 150,000.0 | 0.142 | 303.358 | 0.94 |
Crystal ID | ||||
---|---|---|---|---|
4834BK1 | 4835M | 4836M | 4836M * | |
Major precipitant | PEG4000 | PEG10,000 | PEG20,000 | PEG20,000 |
Wavelength (Å) | 0.8266 | 0.8266 | 0.8266 | 0.7514 |
Maximum resolution (Å) | 1.12 | 1.12 | 1.12 | 1.02 |
Oscillation range (°) | 0.1 | 0.1 | 0.1 | 0.1 |
Number of images | 3600 | 3600 | 3600 | 3600 |
X-ray exposure time per frame (s) | 0.01 | 0.01 | 0.01 | 0.02 |
Space group | P43212 | P43212 | P43212 | P43212 |
Unit-cell parameters (Å) | a = 77.27, b = 77.27, c = 37.55 | a = 77.27, b = 77.27, c = 37.83 | a = 77.15, b = 77.15, c = 37.62 | a = 77.14, b = 77.14, c = 37.62 |
Resolution range (Å) | 54.64–1.12 (1.14–1.12) | 54.64–1.12 (1.14–1.12) | 54.55–1.12 (1.14–1.12) | 54.55–1.02 (1.04–1.02) |
No. of observed reflections | 1,033,331 (52,069) | 1,058,437 (53,038) | 1,040,904 (47,802) | 1,392,055 (63,330) |
No. of unique reflections | 43,853 (2159) | 44,169 (2164) | 43,886 (2064) | 58,018 (2687) |
Multiplicity | 23.6 (24.1) | 24.0 (24.5) | 23.7 (23.2) | 24.0 (23.6) |
Completeness (%) | 100 (100) | 100 (100) | 99.8 (96.4) | 99.8 (95.5) |
<I>/<σ(I)> | 18.2 (5.8) | 27.3 (5.5) | 24.6 (7.8) | 20.7 (4.1) |
Rmerge | 10.0 (57.3) | 5.5 (56.7) | 8.1 (38.9) | 8.3 (78.5) |
Wilson B factor (Å2) | 9.2 | 10.1 | 8.5 | 8.4 |
Overall B factor from relative Wilson plot (Å2) | −0.34 | −0.8 | 0 | 0 |
Mosaicity | 0.42 ± 0.11 | 0.31 ± 0.13 | 0.17 ± 0.06 | 0.18 ± 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanaka, H.; Utata, R.; Tsuganezawa, K.; Takahashi, S.; Tanaka, A. Through Diffusion Measurements of Molecules to a Numerical Model for Protein Crystallization in Viscous Polyethylene Glycol Solution. Crystals 2022, 12, 881. https://doi.org/10.3390/cryst12070881
Tanaka H, Utata R, Tsuganezawa K, Takahashi S, Tanaka A. Through Diffusion Measurements of Molecules to a Numerical Model for Protein Crystallization in Viscous Polyethylene Glycol Solution. Crystals. 2022; 12(7):881. https://doi.org/10.3390/cryst12070881
Chicago/Turabian StyleTanaka, Hiroaki, Rei Utata, Keiko Tsuganezawa, Sachiko Takahashi, and Akiko Tanaka. 2022. "Through Diffusion Measurements of Molecules to a Numerical Model for Protein Crystallization in Viscous Polyethylene Glycol Solution" Crystals 12, no. 7: 881. https://doi.org/10.3390/cryst12070881
APA StyleTanaka, H., Utata, R., Tsuganezawa, K., Takahashi, S., & Tanaka, A. (2022). Through Diffusion Measurements of Molecules to a Numerical Model for Protein Crystallization in Viscous Polyethylene Glycol Solution. Crystals, 12(7), 881. https://doi.org/10.3390/cryst12070881