Cytotoxic Activity of Zinc Oxide Nanoparticles Mediated by Euphorbia Retusa
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Synthesized ZnONPs
2.1.1. UV Analysis
2.1.2. Characterization of Functional Groups (FT-IR)
2.1.3. Zeta Potential of Synthesized Er-ZnONPs
2.1.4. X-ray Diffraction (XRD) Pattern Analysis
2.1.5. Transmission and Scanning Electron Microscopy (SEM and TEM) Studies
2.1.6. Cytotoxic Activity
3. Materials and Methods
3.1. Plant Materials
3.2. Zinc Oxide Nanoparticle Biosynthesis (ZnO NPs)
3.2.1. UV-Visible Spectral Analysis
3.2.2. Fourier Transform-Infrared (FT-IR Analysis)
3.2.3. Zeta Potential Measurements
3.2.4. X-ray Diffraction
3.2.5. Transmission Electron Microscopy (TEM)
3.3. Cytotoxicity Assay
3.3.1. Cell Culture
3.3.2. SRB Cytotoxicity Assay
3.3.3. Immunoblotting Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gowdhami, B.; Jaabir, M.; Archunan, G.; Suganthy, N. Anticancer potential of zinc oxide nanoparticles against cervical carcinoma cells synthesized via biogenic route using aqueous extract of Gracilaria edulis. Mater. Sci. Eng. C 2019, 103, 109840. [Google Scholar]
- Kadhem, H.A.; Ibraheem, S.A.; Jabir, M.S.; Kadhim, A.A.; Taqi, Z.J.; Florin, M.D. Zinc Oxide Nanoparticles Induce Apoptosis in Human Breast Cancer Cells via Caspase-8 and P53 Pathway. Nano Biomed. Eng. 2019, 11, 35–43. [Google Scholar] [CrossRef]
- Reddy, K.M.; Feris, K.; Bell, J.; Wingett, D.G.; Hanley, C.; Punnoose, A. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett. 2007, 90, 213902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murali, M.; Kalegowda, N.; Gowtham, H.G.; Ansari, M.A.; Alomary, M.N.; Alghamdi, S.; Shilpa, N.; Singh, S.B.; Thriveni, M.C.; Aiyaz, M. Plant-Mediated Zinc Oxide Nanoparticles: Advances in the New Millennium towards Understanding Their Therapeutic Role in Biomedical Applications. Pharmaceutics 2021, 13, 1662. [Google Scholar] [CrossRef]
- Hassan, H.F.H.; Mansour, A.M.; Abo-Youssef, A.M.H.; Elsadek, B.E.M.; Messiha, B.A.S. Zinc oxide nanoparticles as a novel anticancer approach; in vitro and in vivo evidence. Clin. Exp. Pharmacol. Physiol. 2017, 44, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Kharissova, O.V.; Dias, H.V.R.; Kharisov, B.I.; Pérez, B.O.; Pérez, V.M.J. The greener synthesis of nanoparticles. Trends Biotechnol. 2013, 31, 240–248. [Google Scholar] [CrossRef]
- Abboud, Y.; Saffaj, T.; Chagraoui, A.; El Bouari, A.; Brouzi, K.; Tanane, O.; Ihssane, B. Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl. Nanosci. 2014, 4, 571–576. [Google Scholar] [CrossRef] [Green Version]
- Lahmadi, S.; Belhamra, M.; Karoune, S.; Kechebar, M.S.A.; Bensouici, C.; Kashi, I.; Mizab, O.; Ksouri, R. In vitro antioxidant capacity of Euphorbia retusa Forssk. from Algerian desert. J. Pharm. Pharmacogn. Res. 2019, 7, 356–366. [Google Scholar]
- Abdallah, E.M. Antimicrobial properties and phytochemical constituents of the methanol extracts of Euphorbia retusa Forssk. and Euphorbia terracina L. from Saudi Arabia. South Asian J. Exp. Biol. 2014, 4, 48–53. [Google Scholar] [CrossRef]
- Sdayria, J.; Rjeibi, I.; Feriani, A.; Ncib, S.; Bouguerra, W.; Hfaiedh, N.; Elfeki, A.; Allagui, M.S. Chemical composition and antioxidant, analgesic, and anti-inflammatory effects of methanolic extract of Euphorbia retusa in mice. Pain Res. Manag. 2018, 2018, 4838413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghareeb, T.; El-Toumy, S.; Elgendy, H.; Haggag, E. Secondary metabolites and hepatoprotective activity of Euphorbia retusa. J. Adv. Pharm. Res. 2018, 2, 283–291. [Google Scholar] [CrossRef]
- Jia, D.; Sun, W. Silver nanoparticles offer a synergistic effect with fluconazole against fluconazole-resistant Candida albicans by abrogating drug efflux pumps and increasing endogenous ROS. Infect. Genet. Evol. 2021, 93, 104937. [Google Scholar] [CrossRef] [PubMed]
- Rotzoll, N.; Dunkel, A.; Hofmann, T. Activity-guided identification of (S)-malic acid 1-O-D-glucopyranoside (morelid) and gamma-aminobutyric acid as contributors to umami taste and mouth-drying oral sensation of morel mushrooms (Morchella deliciosa Fr.). J. Agric. Food Chem. 2005, 53, 4149–4156. [Google Scholar] [CrossRef] [PubMed]
- Attia, G.H.; Marrez, D.A.; Mohammed, M.A.; Albarqi, H.A.; Ibrahim, A.M.; Raey, M.A.E. Synergistic Effect of Mandarin Peels and Hesperidin with Sodium Nitrite against Some Food Pathogen Microbes. Molecules 2021, 26, 3186. [Google Scholar] [CrossRef] [PubMed]
- Ammar, N.M.; Hassan, H.A.; Mohammed, M.A.; Serag, A.; Abd El-Alim, S.H.; Elmotasem, H.; El Raey, M.; El Gendy, A.N.; Sobeh, M.; Abdel-Hamid, A.Z. Metabolomic profiling to reveal the therapeutic potency of Posidonia oceanica nanoparticles in diabetic rats. RSC Adv. 2021, 11, 8398–8410. [Google Scholar] [CrossRef] [PubMed]
- Hegazi, N.M.; Sobeh, M.; Rezq, S.; El-Raey, M.A.; Dmirieh, M.; El-Shazly, A.M.; Mahmoud, M.F.; Wink, M. Characterization of phenolic compounds from Eugenia supra-axillaris leaf extract using HPLC-PDA-MS/MS and its antioxidant, anti-inflammatory, antipyretic and pain killing activities in vivo. Sci. Rep. 2019, 9, 11122. [Google Scholar] [CrossRef] [Green Version]
- Elhawary, S.; El-Hefnawy, H.; Mokhtar, F.A.; Sobeh, M.; Mostafa, E.; Osman, S.; El-Raey, M. Green Synthesis of Silver Nanoparticles Using Extract of Jasminum officinal L. Leaves and Evaluation of Cytotoxic Activity Towards Bladder (5637) and Breast Cancer (MCF-7) Cell Lines. Int. J. Nanomed. 2020, 15, 9771–9781. [Google Scholar] [CrossRef]
- Kang, S.Y.; Kang, J.Y.; Oh, M.J. Antiviral activities of flavonoids isolated from the bark of Rhus verniciflua stokes against fish pathogenic viruses In Vitro. J. Microbiol. 2012, 50, 293–300. [Google Scholar] [CrossRef]
- Dada, A.O.; Adekola, F.A.; Dada, F.E.; Adelani-Akande, A.T.; Bello, M.O.; Okonkwo, C.R.; Inyinbor, A.A.; Oluyori, A.P.; Olayanju, A.; Ajanaku, K.O.; et al. Silver nanoparticle synthesis by Acalypha wilkesiana extract: Phytochemical screening, characterization, influence of operational parameters, and preliminary antibacterial testing. Heliyon 2019, 5, e02517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramirez-Ambrosi, M.; Abad-Garcia, B.; Viloria-Bernal, M.; Garmon-Lobato, S.; Berrueta, L.A.; Gallo, B. A new ultrahigh performance liquid chromatography with diode array detection coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry analytical strategy for fast analysis and improved characterization of phenolic compounds in apple products. J. Chromatogr. A 2013, 1316, 78–91. [Google Scholar] [CrossRef]
- Kok, M.G.; Ruijken, M.M.; Swann, J.R.; Wilson, I.D.; Somsen, G.W.; de Jong, G.J. Anionic metabolic profiling of urine from antibiotic-treated rats by capillary electrophoresis-mass spectrometry. Anal. Bioanal. Chem. 2013, 405, 2585–2594. [Google Scholar] [CrossRef]
- Anwar, H.M.; Georgy, G.S.; Hamad, S.R.; Badr, W.K.; El Raey, M.A.; Abdelfattah, M.A.O.; Wink, M.; Sobeh, M. A Leaf Extract of Harrisonia abyssinica Ameliorates Neurobehavioral, Histological and Biochemical Changes in the Hippocampus of Rats with Aluminum Chloride-Induced Alzheimer’s Disease. Antioxidants 2021, 10, 947. [Google Scholar] [CrossRef] [PubMed]
- Fakhari, S.; Jamzad, M.; Kabiri Fard, H. Green synthesis of zinc oxide nanoparticles: A comparison. Green Chem. Lett. Rev. 2019, 12, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Sumanth, B.; Lakshmeesha, T.R.; Ansari, M.A.; Alzohairy, M.A.; Udayashankar, A.C.; Shobha, B.; Niranjana, S.R.; Srinivas, C.; Almatroudi, A. Mycogenic synthesis of extracellular zinc oxide nanoparticles from xylaria acuta and its nanoantibiotic potential. Int. J. Nanomed. 2020, 15, 8519. [Google Scholar] [CrossRef] [PubMed]
- Attia, G.H.; Alyami, H.S.; Orabi, M.A.A.; Gaara, A.H.; El Raey, M.A. Antimicrobial Activity of Silver and Zinc Nanoparticles Mediated by Eggplant Green Calyx. Int. J. Pharmacol. 2020, 16, 236–243. [Google Scholar] [CrossRef] [Green Version]
- Schreyer, M.; Guo, L.; Thirunahari, S.; Gao, F.; Garland, M. Simultaneous determination of several crystal structures from powder mixtures: The combination of powder X-ray diffraction, band-target entropy minimization and Rietveld methods. J. Appl. Crystallogr. 2014, 47, 659–667. [Google Scholar] [CrossRef]
- Bisht, G.; Rayamajhi, S. ZnO nanoparticles: A promising anticancer agent. Nanobiomedicine 2016, 3, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Ananthalakshmi, R.; Rathinam, S.R.; Sadiq, A.M. Apoptotic Signalling of Huh7 Cancer Cells by Biofabricated Zinc Oxide Nanoparticles. J. Inorg. Organomet. Polym. Mater. 2021, 31, 1764–1773. [Google Scholar] [CrossRef]
- Umamaheswari, A.; Prabu, S.L.; John, S.A.; Puratchikody, A. Green synthesis of zinc oxide nanoparticles using leaf extracts of Raphanus sativus var. Longipinnatus and evaluation of their anticancer property in A549 cell lines. Biotechnol. Rep. 2021, 29, e00595. [Google Scholar] [CrossRef] [PubMed]
- Klenkar, J.; Molnar, M. Natural and synthetic coumarins as potential anticancer agents. J. Chem. Pharm. Res. 2015, 7, 1223–1238. [Google Scholar]
- Bonta, R.K. Dietary phenolic acids and flavonoids as potential anti-cancer agents: Current state of the art and future perspectives. Anti-Cancer Agents Med. Chem. (Former. Curr. Med. Chem.-Anti-Cancer Agents) 2020, 20, 29–48. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, B.; Gulati, M.; Gupta, R.; Singh, S.K.; Gupta, M.; Nabi, A.; Chawla, P.A. A review on plant flavonoids as potential anticancer agents. Curr. Org. Chem. 2021, 25, 737–747. [Google Scholar] [CrossRef]
- Ismail, T.; Calcabrini, C.; Diaz, A.R.; Fimognari, C.; Turrini, E.; Catanzaro, E.; Akhtar, S.; Sestili, P. Ellagitannins in cancer chemoprevention and therapy. Toxins 2016, 8, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fulda, S. Caspase-8 in cancer biology and therapy. Cancer Lett. 2009, 281, 128–133. [Google Scholar] [CrossRef]
- Hashemi Goradel, N.; Najafi, M.; Salehi, E.; Farhood, B.; Mortezaee, K. Cyclooxygenase-2 in cancer: A review. J. Cell. Physiol. 2019, 234, 5683–5699. [Google Scholar] [CrossRef] [PubMed]
- Elgamal, A.M.; El Raey, M.A.; Gaara, A.; Abdelfattah, M.A.O.; Sobeh, M. Phytochemical profiling and anti-aging activities of Euphorbia retusa extract: In silico and in vitro studies. Arab. J. Chem. 2021, 14, 103159. [Google Scholar] [CrossRef]
- Ahmed, N.M.; Youns, M.M.; Soltan, M.K.; Said, A.M. Design, Synthesis, Molecular Modeling and Antitumor Evaluation of Novel Indolyl-Pyrimidine Derivatives with EGFR Inhibitory Activity. Molecules 2021, 26, 1838. [Google Scholar] [CrossRef]
- Attia, G.H.; Moemen, Y.S.; Youns, M.; Ibrahim, A.M.; Abdou, R.; El Raey, M.A. Antiviral zinc oxide nanoparticles mediated by hesperidin and in silico comparison study between antiviral phenolics as anti-SARS-CoV-2. Colloids Surf. B Biointerfaces 2021, 203, 111724. [Google Scholar] [CrossRef]
- Hegazy, W.A.H.; Khayat, M.T.; Ibrahim, T.S.; Youns, M.; Mosbah, R.; Soliman, W.E. Correction to: Repurposing of antidiabetics as Serratia marcescens virulence inhibitors. Braz. J. Microbiol. 2021, 52, 1051. [Google Scholar] [CrossRef]
- Youns, M.; Efferth, T.; Reichling, J.; Fellenberg, K.; Bauer, A.; Hoheisel, J.D. Gene expression profiling identifies novel key players involved in the cytotoxic effect of Artesunate on pancreatic cancer cells. Biochem. Pharmacol. 2009, 78, 273–283. [Google Scholar] [CrossRef] [Green Version]
- Youns, M.; Fu, Y.J.; Zu, Y.G.; Kramer, A.; Konkimalla, V.B.; Radlwimmer, B.; Sultmann, H.; Efferth, T. Sensitivity and resistance towards isoliquiritigenin, doxorubicin and methotrexate in T cell acute lymphoblastic leukaemia cell lines by pharmacogenomics. Naunyn Schmiedebergs Arch. Pharm. 2010, 382, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Ashour, M.L.; El-Readi, M.Z.; Hamoud, R.; Eid, S.Y.; El Ahmady, S.H.; Nibret, E.; Herrmann, F.; Youns, M.; Tahrani, A.; Kaufmann, D. Anti-infective and cytotoxic properties of Bupleurum marginatum. Chin. Med. 2014, 9, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, N.M.; Youns, M.; Soltan, M.K.; Said, A.M. Design, synthesis, molecular modelling, and biological evaluation of novel substituted pyrimidine derivatives as potential anticancer agents for hepatocellular carcinoma. J. Enzym. Inhib. Med. Chem. 2019, 34, 1110–1120. [Google Scholar] [CrossRef] [PubMed]
- Youns, M.; Askoura, M.; Abbas, H.A.; Attia, G.H.; Khayyat, A.N.; Goda, R.M.; Almalki, A.J.; Khafagy, E.S.; Hegazy, W.A.H. Celastrol Modulates Multiple Signaling Pathways to Inhibit Proliferation of Pancreatic Cancer via DDIT3 and ATF3 Up-Regulation and RRM2 and MCM4 Down-Regulation. Onco Targets Ther. 2021, 14, 3849–3860. [Google Scholar] [CrossRef] [PubMed]
- Saleh, A.; ElFayoumi, H.M.; Youns, M.; Barakat, W. Rutin and orlistat produce antitumor effects via antioxidant and apoptotic actions. Naunyn Schmiedebergs Arch. Pharm. 2019, 392, 165–175. [Google Scholar] [CrossRef]
- Moser, J.J.; Chan, E.K.L.; Fritzler, M.J. Optimization of immunoprecipitation–western blot analysis in detecting GW182-associated components of GW/P bodies. Nat. Protoc. 2009, 4, 674–685. [Google Scholar] [CrossRef] [Green Version]
No | Rt | [M-H]− | Fragmentations | Molecular Formula | Error | Proposed Structures | Ref. |
---|---|---|---|---|---|---|---|
1 | 2.01 | 191.0551 | 173, 147, 111 | C7H12O6 | 0.115 | Quinic acid | [12] |
2 | 2.17 | 295.0668 | 179, 133, 115 | C10H16O10 | 0.827 | Malic acid-2-O-hexoside | [13] |
3 | 2.30 | 341.1089 | 179, 161, 143 | C12H22O11 | 1.062 | Dihexoside | [14] |
4 | 3.47 | 315.0718 | 153, 123, 109 | C13H16O9 | 0.782 | Protocatechuic acid-1-O-hexoside | [15] |
5 | 3.52 | 329.0883 | 167, 152, 123 | C14H18O9 | 1.591 | Vanillic acid-1-O-hexoside | [14] |
6 | 3.53 | 345.0466 | 169, 125 | C13H14O11 | 1.362 | Gallic acid–1-O-glucouronide | |
7 | 3.62 | 153.018 | 145, 109 | C7H6O4 | 0.235 | Protocatechuic acid | [15] |
8 | 4.10 | 137.0237 | 93 | C7H6O3 | 0.379 | Hydroxybenzoic acid | [15] |
9 | 4.11 | 183.0288 | 168 | C8H8O5 | 0.010 | Methyl gallate | [16] |
10 | 4.12 | 355.1038 | 193, 178, 149 | C16H20O9 | 1.441 | Ferulic acid-1-O-hexoside | [15] |
11 | 4.31 | 163.0026 | 119 | C9H8O3 | 0.015 | p-Coumaric acid | [17] |
12 | 4.33 | 385.1139 | 223, 208, 193 | C17H22O10 | 0.977 | Sinapic acid-1-O-hexoside | [14] |
13 | 4.34 | 355.1035 | 311, 193 | C16H20O9 | 1.411 | Ferulic acid-4-O-hexoside | [15] |
14 | 4.39 | 179.02318 | 135 | C9H8O4 | 4.551 | Caffeic acid | [14] |
15 | 4.41 | 449.1093 | 287, 269, 179 | C21H22O11 | 1.462 | Dihydrokaempferol–O-hexoside | [18] |
16 | 4.42 | 353.0880 | 289, 191, 179, 173 | C16H18O9 | 1.291 | Chlorogenic acid | [12] |
17 | 5.35 | 447.0935 | 301 | C21H20O11 | 1.312 | Quercetin-O-rhamnoside | [19] |
18 | 5.36 | 461.1669 | 315, 299 | C22H22O11 | 1.557 | Isorhamnetin-O-rhamnoside | [20] |
19 | 5.95 | 491.08334 | 301, 179, 151 | C22H20O13 | 1.323 | Quercetin-3-O-glucouronide methyl ester | |
20 | 5.97 | 273.007 | 193, 178, 149 | C10H10O7S | - | Ferulic acid 4-O-sulphate | [21] |
21 | 6.01 | 417.0669 | 285 | C20H18O10 | 2.08 | Kaempferol-O-pentoside | [22] |
22 | 6.32 | 501.1408 | 337, 175, 163, 119 | C25H26O11 | 1.662 | Dihydrocaffeoyl coumaroyl quinic acid |
Cell Line | Cancer Type | IC50 (µg/mL) |
---|---|---|
HepG2 | Hepatocellular carcinoma | 25.6 ± 1.23 |
Huh-7 | Hepatocellular carcinoma | 25.7 ± 1.02 |
A-549 | Lung cancer | 22.3 ± 1.11 |
H460 | Lung cancer | 51.4 ± 3.27 |
MCF-7 | Breast cancer | 37.7 ± 2.01 |
MDA-MB-231 | Breast cancer | 37 ± 3.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqahtani, A.A.; Attia, G.H.; Elgamal, A.; Aleraky, M.; Youns, M.; Ibrahim, A.M.; Abdou, R.; Shaikh, I.A.; El Raey, M.A. Cytotoxic Activity of Zinc Oxide Nanoparticles Mediated by Euphorbia Retusa. Crystals 2022, 12, 903. https://doi.org/10.3390/cryst12070903
Alqahtani AA, Attia GH, Elgamal A, Aleraky M, Youns M, Ibrahim AM, Abdou R, Shaikh IA, El Raey MA. Cytotoxic Activity of Zinc Oxide Nanoparticles Mediated by Euphorbia Retusa. Crystals. 2022; 12(7):903. https://doi.org/10.3390/cryst12070903
Chicago/Turabian StyleAlqahtani, Abdulsalam A., Gouda H. Attia, Abdelbaset Elgamal, Mohamed Aleraky, Mahmoud Youns, Ammar M. Ibrahim, Randa Abdou, Ibrahim Ahmed Shaikh, and Mohamed A. El Raey. 2022. "Cytotoxic Activity of Zinc Oxide Nanoparticles Mediated by Euphorbia Retusa" Crystals 12, no. 7: 903. https://doi.org/10.3390/cryst12070903
APA StyleAlqahtani, A. A., Attia, G. H., Elgamal, A., Aleraky, M., Youns, M., Ibrahim, A. M., Abdou, R., Shaikh, I. A., & El Raey, M. A. (2022). Cytotoxic Activity of Zinc Oxide Nanoparticles Mediated by Euphorbia Retusa. Crystals, 12(7), 903. https://doi.org/10.3390/cryst12070903