Near-Infrared Spectroscopic Study of OH Stretching Modes in Kaolinite and Dickite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. X-ray Diffraction
3.2. Characteristics of MIR
3.3. Raman
Band Assignment [19,20,21,22,23,24,25,26,27,28,29,30,31,32] | Active | BL-DSL-4 | QJ-1 | QJ-8 | GS-1 | GS-4 | GS-8 |
---|---|---|---|---|---|---|---|
Lattice vibration | R | 122 | 118 | 122 | 122 | 120 | 118 |
Si2O5 out of plane | R | 131 | 127 | 131 | 131 | 132 | 131 |
ν2(e) of AlO6 octahedron | R | 140 | 142 | ||||
A1g(ν1) of AlO6 octahedron | R | 196 | 194 | 198 | 198 | 198 | 195 |
O-H-O stretching vibration | R | 243 | 241 | 241 | 241 | 241 | 238 |
O-H-O stretching vibration | R | 268 | 266 | 268 | 266 | 266 | 263 |
Si-O stretching vibration | R | 334 | 332 | 334 | 334 | 334 | 331 |
Si-O stretching vibration | IF | 412 | 412 | 412 | 411 | 412 | 412 |
Si-O bending vibration | IF, R | 431 | 432 | 431 | 429 | 428 | 428 |
Si-O bending vibration | IF, R | 472 | 473 | 472 | 471 | 471 | 471 |
Si-O-Al vibration | IF | 541 | 542 | 541 | 539 | 541 | 540 |
Si-O-Al vibration | IF | 694 | 692 | 695 | 694 | 695 | 692 |
Si-O-Al vibration | IF, R | 754 | 754 | 754 | 754 | 754 | 752 |
Si-O stretching vibration | IF, R | 794 | 795 | 794 | 794 | 794 | 795 |
Outer Al-OH bending vibration | IF, R | 914 | 914 | 914 | 913 | 913 | 912 |
Inner Al-OH bending vibration | IF | 937 | 937 | 938 | 937 | 937 | 937 |
Si-O-Al vibration | IF | 1007 | 1009 | 1009 | 1004 | 1003 | 1001 |
Si-O-Si vibration | IF | 1033 | 1034 | 1034 | 1033 | 1034 | 1036 |
Si-O stretching vibration | IF | 1099 | 1094 | 1100 | 1097 | 1100 | 1092 |
Si-O stretching vibration | IF | 1115 | 1117 | 1116 | 1116 | 1117 | 1118 |
Outer OH2, OH4 stretching vibration | IF, R | 3620 | 3620 | 3620 | |||
Inner OH1 stretching vibration | IF, R | 3622 | 3622 | 3623 | 3622 | 3623 | 3622 |
Outer OH2, OH4 stretching vibration | R | 3645 | 3645 | 3645 | |||
Outer OH2, OH4 stretching vibration | IF, R | 3653 3670 | 3652 3669 | 3654 3672 | 3654 | 3655 | 3654 |
Outer OH3 stretching vibration | R | 3685 | 3683 | 3683 | |||
Outer OH3 stretching vibration | IF, R | 3696 | 3695 | 3697 | 3699 3714 | 3705 3715 | 3700 3712 |
3.4. Characteristics of NIR
4. Discussion
Assignment of OH Vibration in NIR Spectra
5. Conclusions
- The common characteristic peaks in the near-infrared spectra of kaolinite-group minerals are located near 4530 and 7068 cm−1, corresponding to the combination of inner OH stretching vibration and outer OH bending vibration and the first fundamental overtone of inner OH. Next to the characteristic peak, kaolinite has two secondary peaks near 4610 and 7177 cm−1, corresponding to the combination of outer OH stretching vibration and bending vibration and the overtone of outer OH stretching vibration. The secondary peak of dickite is near 4588 cm−1, corresponding to the combination of outer OH stretching vibration and inner OH bending vibration. There is no secondary characteristic peak in the first fundamental overtone region of dickite.
- The OH combination vibration of kaolinite-group minerals is located at 4000–4800 cm−1. The OH stretching vibration will be combined with the lattice deformation vibration, OH bending vibration, and Si-O vibration to form new vibration absorption. Moreover, 7000–7250 cm−1 is the first fundamental overtone region for the OH stretching vibration, with a strong absorption peak and several weak peaks. Kaolinite and dickite each have three different combined overtones for the OH stretching vibration, which are composed of adjacent OH stretching vibrations.
- The non-infrared-active OH stretching vibration of kaolinite and dickite showed an infrared-active absorption peak in the overtone region. It can be used to identify vibration types that cannot be observed by MIR spectra.
- Due to the influence of non-ideal conditions, the actual peak position of the overtone peak is lower than the theoretical position. The factor of the first fundamental overtone of the OH group stretching vibration is approximately 1.95.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, H.Y.; Zhang, S.T.; Chu, G.B.; Zhang, Y.; Cheng, J.M.; Tian, J.; Han, J.S. The short wave infrared (SWIR) spectral characteristics of alteration minerals and applications for ore exploration in the typical skarn-porphyry deposits, Edong ore district, eastern China. Acta Petrol. Sin. 2019, 35, 3629–3643. [Google Scholar]
- Deng, Y.K.; Cao, J.J.; Dang, W.Q.; Wang, G.Q.; Liu, X.; Li, D.W. XRD and NIR Analysis of Oxidation Particles in Dabashan Polymetallic Deposit and Its Significance. Spectrosc. Spectr. Anal. 2019, 39, 2929–2934. [Google Scholar]
- Zhang, C.; Ye, F.W.; Wu, D.; Wang, J.G.; Guo, B.J. Characteristics Recognition of Imaging Spectra for Uranium Mineralization Altered Mineral Assemblage in Xiangshan. Uranium Geol. 2021, 37, 69–77. [Google Scholar]
- Farmer, V.C. (Ed.) The Infrared Spectra of Minerals; The Mineralogical Society of Great Britain & Ireland: Middlesex, UK, 1974; 539p. [Google Scholar]
- Yu, X.Y. Colored Gemmology, 2nd ed.; Geological Publishing House: Beijing, China, 2016; pp. 86–87. [Google Scholar]
- Bishop, J.L.; Lane, M.D.; Dyar, M.D.; Brown, A.J. Reflectance and emission spectroscopy study of four groups of phyllosilicates: Smectites, kaolinite-serpentines, chlorites and micas. Clay Miner. 2008, 43, 35–54. [Google Scholar] [CrossRef]
- Post, J.L.; Crawford, S.M. Uses of near-infared spectra for the identification of clay minerals. Appl. Clay Sci. 2014, 95, 383–387. [Google Scholar] [CrossRef]
- Liao, Y.P.; Cao, J.J.; Wu, Z.Q.; Luo, S.Y.; Wang, Z.Y. Near Infrared Spectroscopy of the Cretaceous Red Beds in Inner Mongolia Dongshengmiao. Spectrosc. Spectr. Anal. 2015, 35, 2521–2525. [Google Scholar]
- Guo, X.F.; Zhu, X.; Zu, E.D. Near Infrared Spectroscopy Study for Different Types of Phyllosilicate Gemstones Minerals. Bull. Chin. Ceram. Soc. 2018, 37, 2270–2273. [Google Scholar]
- Giese, R.F. Kaolin minerals: structures and stabilities. Rev. Mineral. Geochem. 1988, 19, 29–66. [Google Scholar]
- Petit, S.; Madejová, J.; Decarreau, A. Characterization of Octahedral Substitutions in Kaolinites Using Near Infrared Spectroscopy. Clays Clay Miner. 1999, 47, 103–108. [Google Scholar] [CrossRef]
- Balan, E.; Saitta, A.M.; Mauri, F.; Calas, G. First-principles modeling of the infrared spectrum of kaolinite. Am. Mineral. 2001, 86, 1321–1330. [Google Scholar] [CrossRef]
- Medeghini, L.; Mignardi, S.; De Vito, C.; Conte, A.M. Evaluation of a FTIR data pretreatment method for Principal Component Analysis applied to archaeological ceramics. Microchem. J. 2016, 125, 224–229. [Google Scholar] [CrossRef]
- Todorova, M.H.; Atanassova, S.L. Near infrared spectra and soft independent modelling of class analogy for discrimination of Chernozems, Luvisols and Vertisols. J. Near Infrared Spectrosc. 2016, 24, 271–280. [Google Scholar] [CrossRef]
- Yin, Y.S.; Yin, J.; Zhang, W.; Tian, H.; Hu, Z.M.; Feng, L.H.; Chen, D.L. Characterization of Mineral Matter in Coal Ashes with Infrared and Raman Spectroscopy. Spectrosc. Spectr. Anal. 2018, 38, 789–793. [Google Scholar]
- Rinnan, Å.; Berg, F.; Engelsen, S.B. Review of the most common pre-processing techniques for near-infrared spectra. Trends Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- Balan, E.; Lazzeri, M.; Saitta, A.M.; Allard, T.; Fuchs, Y.; Mauri, F. First-principles study of OH-stretching modes in kaolinite, dickite, and nacrite. Am. Mineral. 2005, 90, 50–60. [Google Scholar] [CrossRef]
- Johansson, U.; Frost, R.L.; Forsling, W.; Kloprogge, J.T. Raman Spectroscopy of the Kaolinite Hydroxyls at 77 K. Appl. Spectrosc. 1998, 52, 1277–1282. [Google Scholar] [CrossRef]
- Han, X. Study on the Mineralogical Characteristics of Laos Stones. Master’s Thesis, China University of Geosciences, Wuhan, China, 2019. [Google Scholar]
- Jiang, J.P. Study on the Mineralogical Characteristics of Laos Stones. Master’s Thesis, China University of Geosciences, Beijing, China, 2020. [Google Scholar]
- Farmer, V.C. Differing effects of particle size and shape in the infrared and Raman spectra of kaolinite. Clay Miner. 1998, 33, 601–604. [Google Scholar] [CrossRef]
- Balan, E.; Delattre, S.; Guillaumet, M.; Salje, E.K. Low-temperature infrared spectroscopic study of OH-stretching modes in kaolinite and dickite. Am. Mineral. 2010, 95, 1257–1266. [Google Scholar] [CrossRef]
- Frost, R.L.; Johansson, U. Combination Bands in the Infrared Spectroscopy of Kaolins—A Drift Spectroscopic Study. Clays Clay Miner. 1998, 46, 466–477. [Google Scholar] [CrossRef]
- Castellano, M.; Turturro, A.; Riani, P.; Montanari, T.; Finocchio, E.; Ramis, G.; Busca, G. Bulk and surface properties of commercial kaolins. Appl. Clay Sci. 2010, 48, 446–454. [Google Scholar] [CrossRef]
- Frost, R.L.; Kloprogge, J.T. Towards a single crystal Raman spectrum of kaolinite at 77 K. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2001, 57, 163–175. [Google Scholar] [CrossRef]
- Dong, J.K.; Du, Y.S. A Study of Mineralogical Characteristics of Larderite Deposits in Fujian Province. Acta Geosci. Sin. 2017, 38, 208–222. [Google Scholar]
- Yuan, Y.; Shi, G.H.; Lou, F.S.; Wu, S.J.; Shi, M.; Huang, A.J. Mineralogical and Spectral Characteristics of “Gaozhou Stone” from Jiangxi Province. Spectrosc. Spectr. Anal. 2015, 35, 65–70. [Google Scholar]
- Hu, X.C.; Yan, J.; Zhu, X.M. The Specific IR Spectra of Qingtian Stones from Zhejiang. Phys. Test. Chem. Anal. (Part B Chem. Anal.) 2016, 52, 24–28. [Google Scholar]
- Han, W.; Ke, J.; Chen, H.; Lu, T.J.; Yin, K. Diffuse Reflectance Spectroscopy of Red Colored “Laowo Stone”. Spectrosc. Spectr. Anal. 2016, 36, 2634–2638. [Google Scholar]
- Liu, Y.G.; Chen, T. Infrared and Raman Spectra Study on Tianhuang. Spectrosc. Spectr. Anal. 2012, 32, 2143–2146. [Google Scholar]
- Johnston, C.T.; Helsen, J.; Schoonheydt, R.A.; Bish, D.L.; Agnew, S.F. Single-crystal Raman spectroscopic study of dickite. Am. Mineral. 1998, 83, 75–84. [Google Scholar] [CrossRef]
- Frost, R.L.; Tran, T.H.; Rintoul, L.; Kristof, J. Raman microscopy of dickite, kaolinite and their intercalates. The Analyst 1998, 123, 611–616. [Google Scholar] [CrossRef]
- Bishop, J.L.; Pieters, C.M.; Edwards, J.O. Infrared spectroscopic analyses on the nature of water in montmorillonite. Clays Clay Miner. 1994, 42, 702–716. [Google Scholar] [CrossRef]
- Wu, S.; He, M.Y.; Yang, M.; Zhang, B.Y.; Wang, F.; Li, Q.Z. Near-Infrared Spectroscopy Study of Serpentine Minerals and Assignment of the OH Group. Crystals 2021, 11, 1130. [Google Scholar] [CrossRef]
- Bishop, J.; Murad, E.; Dyar, M.D. The influence of octahedral and tetrahedral cation substitution on the structure of smectites and serpentines as observed through infrared spectroscopy. Clay Miner. 2002, 37, 617–628. [Google Scholar] [CrossRef]
- Baron, F.; Petit, S. Interpretation of the infrared spectra of the lizardite-nepouite series in the near- and mid-infrared range. Am. Mineral. 2016, 101, 423–430. [Google Scholar] [CrossRef]
- Petit, S.; Decarreau, A.; Martin, F. Refined relationship between the position of the fundamental OH stretching and the first overtones for clays. Phys. Chem. Miner. 2005, 31, 585–592. [Google Scholar] [CrossRef]
Sample | Color | Minerals | Refractive Index (RI) | Specific Gravity (SG) | Isomorphism (w%) |
---|---|---|---|---|---|
BL-DSL-4 | White | Kaolinite | 1.56 | 2.65 | Fe/0.1%, Ca/0.1%, Cu/<0.1% |
QJ-1 | Gray | Kaolinite | 1.56 | 2.61 | K/0.2%, Fe/<0.1% |
QJ-8 | White | Kaolinite | 1.56 | 2.62 | S/0.2%, K/0.1%, Ca/<0.1% |
GS-1 | Gray | Dickite | 1.55 | 2.61 | Not detected |
GS-4 | White | Dickite | 1.55 | 2.60 | K/0.1%, Fe/<0.1% |
GS-8 | Light yellow | Dickite | 1.56 | 2.63 | K/0.4%, Fe/0.1% |
Assignment | Kaolinite [23] | Kaolinite [35] | BL-DSL-4 | QJ-1 | QJ-8 | GS-1 | GS-4 | GS-8 |
---|---|---|---|---|---|---|---|---|
Combination of OH stretching and lattice vibration | 4020 | 4022 | 4023 | 4019 | 4020 | 4023 | ||
4093 | 4093 | 4093 | 4097 | 4096 | 4097 | |||
4195 | 4197 | 4197 | 4197 | 4197 | 4197 | 4197 | ||
4249 | 4247 | 4248 | 4247 | 4245 | 4246 | 4247 | ||
4312 | 4332 | 4330 | 4328 | 4335 | 4337 | 4336 | ||
Combination of OH stretching and bending vibration | 4527 | 4530 | 4530 | 4530 | 4530 | 4530 | 4531 | 4531 |
4558 | 4560 | 4565 | 4562 | 4567 | 4567 | 4564 | ||
4590 | 4587 | 4585 | 4587 | 4588 | 4589 | 4588 | ||
4610 | 4613 | 4609 | 4610 | 4610 | 4614 | 4610 | ||
4632 | 4633 | 4634 | 4631 | 4633 | 4636 | 4638 | 4635 | |
Combination of inner OH stretching and lattice vibration | 4729 | 4732 | 4733 | 4731 | 4734 | 4733 | ||
The first fundamental overtone of OH stretching vibration | 7067 | 7069 | 7068 | 7068 | 7068 | 7068 | 7070 | 7070 |
7099 | 7092 | 7089 | 7087 | 7098 | 7095 | 7110 | ||
7118 | 7124 | 7113 | 7115 | 7113 | ||||
7135 | 7135 | 7135 | 7133 | 7131 | 7131 | |||
7156 | 7148 | 7158 | 7158 | 7156 | 7155 | --- | --- | |
7168 | 7175 | 7177 | 7177 | 7176 | 7175 | 7177 | 7178 | |
7182 | 7203 | 7196 | 7195 | 7196 | 7193 | 7197 | 7195 | |
7222 | 7218 | 7217 | 7220 | 7217 | 7220 | 7217 | ||
7232 | 7235 | 7234 | 7235 |
Measured Peak | Fundamental Peaks | Theoretical Peak | Δ | Measured Peak | Fundamental Peaks | Theoretical Peak | Δ | ||
---|---|---|---|---|---|---|---|---|---|
BL-DSL-4 | 4530 | 3622 + 914 | 4536 | 6 | GS-1 | 4530 | 3622 + 913 | 4535 | 5 |
4560 | 3653 + 914 | 4567 | 7 | 4567 | 3654 + 913 | 4567 | 0 | ||
4587 | 3670 + 914 | 4584 | −3 | 4588 | 3654 + 937 | 4591 | 3 | ||
4613 | 3696 + 914 | 4610 | −3 | 4610 | 3699 + 913 | 4612 | 2 | ||
4634 | 3696 + 937 | 4633 | −1 | 4636 | 3699 + 937 | 4636 | 0 | ||
QJ-1 | 4530 | 3622 + 914 | 4536 | 6 | GS-4 | 4531 | 3623 + 913 | 4536 | 5 |
4565 | 3652 + 914 | 4566 | 1 | 4567 | 3655 + 913 | 4568 | 1 | ||
4585 | 3669 + 914 | 4583 | −2 | 4589 | 3655 + 937 | 4592 | 3 | ||
4609 | 3695 + 914 | 4609 | 0 | 4614 | 3705 + 913 | 4618 | 4 | ||
4631 | 3695 + 937 | 4632 | 1 | 4638 | 3705 + 937 | 4642 | 4 | ||
QJ-8 | 4530 | 3623 + 914 | 4537 | 7 | GS-8 | 4531 | 3622 + 912 | 4534 | 3 |
4562 | 3654 + 914 | 4568 | 6 | 4564 | 3654 + 912 | 4566 | 2 | ||
4587 | 3672 + 914 | 4586 | −1 | 4588 | 3654 + 937 | 4591 | 3 | ||
4610 | 3697 + 914 | 4611 | 1 | 4610 | 3700 + 912 | 4612 | 2 | ||
4633 | 3697 + 938 | 4635 | 2 | 4635 | 3700 + 937 | 4637 | 2 |
Measured Peak | Fundamental Peaks | Factor | Measured Peak | Fundamental Peaks | Factor | ||
---|---|---|---|---|---|---|---|
BL-DSL-4 | 7068 | 3622 | 1.9514 | GS-1 | 7068 | 3622 | 1.9514 |
7092 | (3622 + 3653)/2 | 1.9497 | 7098 | 3645 * | 1.9473 | ||
7113 | 3653 | 1.9472 | 7133 | 3654 | 1.9521 | ||
7135 | 3670 | 1.9447 | 7155 | (3645 * + 3699)/2 | 1.9485 | ||
7158 | (3653 + 3685 *)/2 | 1.9504 | 7175 | (3653 + 3699)/2 | 1.9518 | ||
7177 | 3685 * | 1.9476 | 7193 | (3653 + 3714)/2 | 1.9528 | ||
7196 | (3685 * + 3696)/2 | 1.9499 | 7217 | 3699 | 1.9511 | ||
7218 | 3696 | 1.9529 | 7235 | 3714 | 1.9480 | ||
QJ-1 | 7068 | 3622 | 1.9514 | GS-4 | 7070 | 3623 | 1.9514 |
7089 | (3622 + 3652)/2 | 1.9491 | 7095 | 3645 * | 1.9465 | ||
7115 | 3652 | 1.9482 | 7131 | 3655 | 1.9510 | ||
7135 | 3669 | 1.9460 | --- | --- | --- | ||
7158 | (3652 + 3683 *)/2 | 1.9509 | 7177 | (3655 + 3705)/2 | 1.9503 | ||
7177 | 3683 * | 1.9487 | 7197 | (3655 + 3715)/2 | 1.9531 | ||
7195 | (3683 * + 3695)/2 | 1.9504 | 7220 | 3705 | 1.9487 | ||
7217 | 3695 | 1.9532 | 7234 | 3715 | 1.9472 | ||
QJ-8 | 7068 | 3623 | 1.9509 | GS-8 | 7070 | 3622 | 1.9520 |
7087 | (3623 + 3654)/2 | 1.9478 | 7110 | 3645 * | 1.9506 | ||
7113 | 3654 | 1.9466 | 7131 | 3654 | 1.9516 | ||
7135 | 3672 | 1.9449 | --- | --- | --- | ||
7156 | (3654 + 3683 *)/2 | 1.9488 | 7178 | (3654 + 3700)/2 | 1.9521 | ||
7176 | 3683 * | 1.9484 | 7195 | (3654 + 3712)/2 | 1.9536 | ||
7196 | (3683 * + 3697)/2 | 1.9501 | 7217 | 3700 | 1.9505 | ||
7220 | 3697 | 1.9529 | 7235 | 3712 | 1.9491 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; He, M.; Yang, M.; Peng, B. Near-Infrared Spectroscopic Study of OH Stretching Modes in Kaolinite and Dickite. Crystals 2022, 12, 907. https://doi.org/10.3390/cryst12070907
Wu S, He M, Yang M, Peng B. Near-Infrared Spectroscopic Study of OH Stretching Modes in Kaolinite and Dickite. Crystals. 2022; 12(7):907. https://doi.org/10.3390/cryst12070907
Chicago/Turabian StyleWu, Shaokun, Mingyue He, Mei Yang, and Bijie Peng. 2022. "Near-Infrared Spectroscopic Study of OH Stretching Modes in Kaolinite and Dickite" Crystals 12, no. 7: 907. https://doi.org/10.3390/cryst12070907
APA StyleWu, S., He, M., Yang, M., & Peng, B. (2022). Near-Infrared Spectroscopic Study of OH Stretching Modes in Kaolinite and Dickite. Crystals, 12(7), 907. https://doi.org/10.3390/cryst12070907