Natural Forsterite Strongly Enriched in Boron: Crystal Structure and Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. EPMA
3.2. LA-ICP-MS
3.3. Single Crystal X-ray Diffraction
3.4. Raman Spectrum
3.5. Infrared Spectrum
4. Discussion
4.1. The Coupled Substitution B(F, OH)Si−1, O−1
4.2. The Rarity of Mg- and B-Rich Forsterite
5. Conclusions
- (1)
- The chemical composition of forsterite from Jian forsterite jade of Jilin province, China, is B-rich end-member forsterite. This forsterite is the most magnesium- and boron-rich natural olivine.
- (2)
- The B-rich forsterite is orthorhombic, in the space group Pnma, and its unit-cell dimensions are: a = 10.1918(7) Å, b = 5.9689(4) Å, c = 4.7484(3) Å, α = 90°, β = 90°, γ = 90°, and V = 288.86(3) Å3. The unit-cell parameters (a, b, and c) and unit-cell volume of forsterite in Jian forsterite jade are smaller than common natural olivine. There is a negative and significant correlation between unit-cell parameters and Fo values.
- (3)
- The Raman of B-rich forsterite is consistent with that of mantle olivine (Fo = 91). The Raman shift of B-rich forsterite is mainly in 227, 305, 437, 544, 586, 609, 824, 857, 882, 919, and 967 cm−1. With the substitution of magnesium for iron increasing in the forsterite-fayalite series, the bands of the Raman spectrum of B-rich forsterite will systematically shift to high Raman shift. The infrared spectrum characteristic peaks of B-rich forsterite appear mainly at approximately 1303, 1259, 1168, 990, 958, 883, 839, 761, 610, 508, 468, and 424 cm−1. In particular, the stretching vibrations of BO3 groups occur at 761, 1168, 1259, and 1303 cm−1.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kadziolka-Gawel, M.; Dulski, M.; Kalinowski, L.; Wojtyniak, M. The effect of gamma irradiation on the structural properties of olivine. J. Radioanal Nucl. Chem. 2018, 317, 261–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ottonello, G.; Princivalle, F.; Della Giusta, A. Temperature, composition, and f O2 effects on intersite distribution of Mg and Fe2+ in olivines. Phys. Chem. Miner. 1990, 17, 301–312. [Google Scholar] [CrossRef]
- Princivalle, F.; Secco, L. Crystal structure refinement of 13 olivines in the forsterite-fayalite series from volcanic rocks and ultramafic nodules. Tschermaks Mineral. Petrogr. Mitt. 1985, 34, 105–115. [Google Scholar] [CrossRef]
- Shchipalkina, N.V.; Pekov, I.V.; Zubkova, N.V.; Koshlyakova, N.N.; Sidorov, E.G. Natural forsterite strongly enriched by arsenic and phosphorus: Chemistry, crystal structure, crystal morphology and zonation. Phys. Chem. Miner. 2019, 46, 889–898. [Google Scholar] [CrossRef]
- Plechov, P.Y.; Shcherbakov, V.D.; Nekrylov, N.A. Extremely magnesian olivine in igneous rocks. Russ. Geol. Geophys. 2018, 59, 1702–1717. [Google Scholar] [CrossRef]
- Kent, A.J.R.; Rossman, G.R. Hydrogen, lithium, and boron in mantle-derived olivine: The role of coupled substitutions. Am. Mineral. 2002, 87, 1432–1436. [Google Scholar] [CrossRef]
- Müller-Sommer, M.; Hock, R.; Kirfel, A. Rietveld refinement study of the cation distribution in (Co, Mg)-olivine solid solution. Phys. Chem. Miner. 1997, 24, 17–23. [Google Scholar] [CrossRef]
- Nestola, F.; Nimis, P.; Ziberna, L.; Longo, M.; Marzoli, A.; Harris, J.W.; Manghnani, M.H.; Fedortchouk, Y. First crystal-structure determination of olivine in diamond: Composition and implications for provenance in the Earth’s mantle. Earth Planet. Sci. Lett. 2011, 305, 249–255. [Google Scholar] [CrossRef]
- Taran, M.N.; Matsyuk, S.S. Fe2+, Mg-distribution among non-equivalent structural sites M1 and M2 in natural olivines: An optical spectroscopy study. Phys. Chem. Miner. 2013, 40, 309–318. [Google Scholar] [CrossRef]
- Hazen, R.M. Effects of temperature and pressure on the crystal structure of forsterite. Am. Mineral. 1976, 61, 1280–1293. [Google Scholar]
- Smyth, J.R.; Hazen, R.M. The crystal structure and horhonolite at seeral temperatures up to 900 °C. Am. Mineral. 1973, 58, 588–593. [Google Scholar]
- Xu, J.; Fan, D.; Zhang, D.; Li, B.; Zhou, W.; Dera, P.K. Investigation of the crystal structure of a low water content hydrous olivine to 29.9 GPa: A high-pressure single-crystal X-ray diffraction study. Am. Mineral. 2020, 105, 1857–1865. [Google Scholar] [CrossRef]
- Pamato, M.G.; Nestola, F.; Novella, D.; Smyth, J.R.; Pasqual, D.; Gatta, G.D.; Alvaro, M.; Secco, L. The High-Pressure Structural Evolution of Olivine along the Forsterite—Fayalite Join. Minerals 2019, 9, 790. [Google Scholar] [CrossRef] [Green Version]
- Artioli, G.; Rinaldi, R.; Wilson, C.; Zanazzi, P. High-temperature Fe-Mg cation partitioning in olivine: In-situ single-crystal neutron diffraction study. Am. Mineral. 1995, 80, 197–200. [Google Scholar] [CrossRef]
- Kuebler, K.E.; Jolliff, B.L.; Wang, A.; Haskin, L.A. Extracting olivine (Fo-Fa) compositions from Raman spectral peak positions. Geochim. Cosmochim. Acta 2006, 70, 6201–6222. [Google Scholar] [CrossRef]
- Breitenfeld, L.B.; Dyar, M.D.; Carey, C.J.; Tague, T.J.; Wang, P.; Mullen, T.; Parente, M. Predicting olivine composition using Raman spectroscopy through band shift and multivariate analyses. Am. Mineral. 2018, 103, 1827–1836. [Google Scholar] [CrossRef]
- Yasuzuka, T.; Ishibashi, H.; Arakawa, M.; Yamamoto, J.; Kagi, H. Simultaneous determination of Mg# and residual pressure in olivine using micro-Raman spectroscopy. J. Mineral. Petrol. Sci. 2009, 104, 395–400. [Google Scholar] [CrossRef] [Green Version]
- Bolfan-Casanova, N.; Montagnac, G.; Reynard, B. Measurement of water contents in olivine using Raman spectroscopy. Am. Mineral. 2014, 99, 149–156. [Google Scholar] [CrossRef]
- Marschall, H.R.; Wanless, V.D.; Shimizu, N.; Pogge von Strandmann, P.A.E.; Elliott, T.; Monteleone, B.D. The boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle. Geochim. Cosmochim. Acta 2017, 207, 102–138. [Google Scholar] [CrossRef] [Green Version]
- Ottolini, L.; Le Fèvre, B.; Vannucci, R. Direct assessment of mantle boron and lithium contents and distribution by SIMS analyses of peridotite minerals. Earth Planet. Sci. Lett. 2004, 228, 19–36. [Google Scholar] [CrossRef]
- Grew, E.S.; Pertsev, N.N.; Boronikhin, V.A.; Borisovskiy, S.Y.; Yates, M.G.; Marquez, N. Serendibite in the Tayozhnoye deposit of the Aldan Shield, eastern Siberia, U.S.S.R. Am. Mineral. 1991, 76, 1061–1080. [Google Scholar]
- Sykes, D.; Rossman, G.R.; Veblen, D.R.; Grew, E.S. Enhanced H and F incorporation in borian olivine. Am. Mineral. 1994, 79, 904–908. [Google Scholar]
- Gose, J.; Reichart, P.; Dollinger, G.; Schmadicke, E. Water in natural olivine-determined by proton-proton scattering analysis. Am. Mineral. 2008, 93, 1613–1619. [Google Scholar] [CrossRef]
- Ingrin, J.; Kovacs, I.; Deloule, E.; Balan, E.; Blanchard, M.; Kohn, S.C.; Hermann, J. Identification of hydrogen defects linked to boron substitution in synthetic forsterite and natural olivine. Am. Mineral. 2014, 99, 2138–2141. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; He, M.; Yan, W.; Yang, M.; Liu, X. Jianite: Massive Dunite Solely Made of Virtually Pure Forsterite from Ji’an County, Jilin Province, Northeast China. Minerals 2020, 10, 220. [Google Scholar] [CrossRef] [Green Version]
- De Hoog, J.C.M.; Gall, L.; Cornell, D.H. Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry. Chem. Geol. 2010, 270, 196–215. [Google Scholar] [CrossRef] [Green Version]
- Princivalle, F.; De Min, A.; Lenaz, D.; Scarbolo, M.; Zanetti, A. Ultramafic xenoliths from Damaping (Hannuoba region, NE-China): Petrogenetic implications from crystal chemistry of pyroxenes, olivine and Cr-spinel and trace element content of clinopyroxene. Lithos 2014, 188, 3–14. [Google Scholar] [CrossRef]
- Birle, J.D.; Gibbs, G.V.; Moore, P.B.; ASmith, J.V. Crystal structure of natural olivines. Am. Mineral. 1968, 53, 807–824. [Google Scholar]
- Princivalle, F. Influence of Temperature and Composition on Mg–Fe2+ Intracrystalline Distribution in Olivines. Mineral. Petrol. 1990, 43, 121–129. [Google Scholar] [CrossRef]
- Bai, W.; Fang, Q.; Zhang, Z.; Yan, B. Crystal structure and significance of magnesium olivine from pod-shaped chromite from The Lubsha ophiolite in Tibet. J. Rock Mineral. 2001, 20, 1–10. [Google Scholar]
- Chopelas, A. Single crystal Raman spectra of forsterite, fayalite, and monticellite. Am. Mineral. 1991, 76, 1101–1109. [Google Scholar]
- Kolesov, B.A.; Geiger, C.A. A Raman spectroscopic study of Fe–Mg olivines. Phys. Chem. Miner. 2004, 31, 142–154. [Google Scholar] [CrossRef]
- Mouri, T.; Enami, M. Raman spectroscopic study of olivine-group minerals. J. Mineral. Petrol. Sci. 2008, 103, 100–104. [Google Scholar] [CrossRef] [Green Version]
- Halenius, U.; Skogby, H.; Eden, M.; Nazzareni, S.; Kristiansson, P.; Resmark, J. Coordination of boron in nominally boron-free rock forming silicates: Evidence for incorporation of BO3 groups in clinopyroxene. Geochim. Cosmochim. Acta 2010, 74, 5672–5679. [Google Scholar] [CrossRef]
- Guo, Y.X.; Qu, D.l.; Li, Z.; Yang, C.G. Effect of boron oxide on crystal structure and properties of magnesium olivine synthesized from magnesite tailings. Bull. Chin. Ceram. Soc. 2016, 35, 865–869. [Google Scholar] [CrossRef]
- Kovacs, I.; O’Neill, H.S.C.; Hermann, J.; Hauri, E.H. Site-specific infrared O–H absorption coefficients for water substitution into olivine. Am. Mineral. 2010, 95, 292–299. [Google Scholar] [CrossRef]
- Gose, J.; Schmädicke, E.; Markowitz, M.; Beran, A. OH point defects in olivine from Pakistan. Miner. Petrol. 2009, 99, 105–111. [Google Scholar] [CrossRef]
- Matsyuk, S.S.; Langer, K. Hydroxyl in olivines from mantle xenoliths in kimberlites of the Siberian platform. Contrib. Miner. Petrol. 2004, 147, 413–437. [Google Scholar] [CrossRef]
- Sobolev, A.V.; Hofmann, A.W.; Kuzmin, D.V.; Yaxley, G.M.; Arndt, N.T.; Chung, S.L.; Danyushevsky, L.V.; Elliott, T.; Frey, F.A.; Garcia, M.O.; et al. The amount of recycled crust in sources of mantle-derived melts. Science 2007, 316, 412–417. [Google Scholar] [CrossRef]
- Xiong, F.; Yang, J.; Robinson, P.T.; Xu, X.; Liu, Z.; Li, Y.; Li, J.; Chen, S. Origin of podiform chromitite, a new model based on the Luobusa ophiolite, Tibet. Gondwana Res. 2015, 27, 525–542. [Google Scholar] [CrossRef]
- Majumdar, A.S.; Hövelmann, J.; Vollmer, C.; Berndt, J.; Mondal, S.K.; Putnis, A. Formation of Mg-rich Olivine Pseudomorphs in Serpentinized Dunite from the Mesoarchean Nuasahi Massif, Eastern India: Insights into the Evolution of Fluid Composition at the Mineral–Fluid Interface. J. Petrol. 2016, 57, 3–26. [Google Scholar] [CrossRef] [Green Version]
- Blondes, M.S.; Brandon, M.T.; Reiners, P.W.; Page, F.Z.; Kita, N.T. Generation of Forsteritic Olivine (Fo99·8) by Subsolidus Oxidation in Basaltic Flows. J. Petrol. 2012, 53, 971–984. [Google Scholar] [CrossRef] [Green Version]
- Nekrylov, N.; Plechov, P.Y.; Gritsenko, Y.D.; Portnyagin, M.V.; Shcherbakov, V.D.; Aydov, V.A.; Garbe-Schönberg, D. Major and trace element composition of olivine from magnesian skarns and silicate marbles. Am. Mineral. 2021, 106, 206–215. [Google Scholar] [CrossRef]
Sample | S-1 | S-2 | S-3 | S-4 | O-1 | O-2 |
---|---|---|---|---|---|---|
SiO2 | 39.41 | 41.98 | 41.84 | 41.71 | 41.31 | 41.33 |
TiO2 | 0.12 | 0.05 | 0.02 | 0.03 | 0.00 | 0.00 |
Al2O3 | 0.03 | 0.01 | 0.02 | 0.01 | 0.00 | 0.00 |
Cr2O3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 |
FeO | 0.28 | 0.37 | 0.35 | 0.39 | 8.17 | 7.86 |
MnO | 0.04 | 0.01 | 0.08 | 0.00 | 0.06 | 0.15 |
NiO | 0.08 | 0.00 | 0.05 | 0.00 | 0.44 | 0.36 |
MgO | 60.53 | 58.21 | 57.12 | 57.20 | 49.54 | 49.74 |
CaO | 0.04 | 0.00 | 0.01 | 0.01 | 0.021 | 0.03 |
Na2O | 0.00 | 0.00 | 0.01 | 0.03 | 0.00 | 0.00 |
K2O | 0.01 | 0.00 | 0.02 | 0.03 | 0.00 | 0.00 |
F | 1.06 | 0.13 | 0.17 | 0.18 | 0.00 | 0.00 |
Total | 101.59 | 100.75 | 99.69 | 99.59 | 99.55 | 99.47 |
Fo | 99.74 | 99.64 | 99.66 | 99.62 | 91.53 | 91.86 |
Element | S-1 | S-2 | S-3 | S-4 | O-1 | O-2 |
---|---|---|---|---|---|---|
Li | 1.93 | 2.17 | 2.51 | 2.62 | 1.18 | 1.05 |
B | 1773.4 | 1792.54 | 1795.56 | 1795.91 | b.d.l. | b.d.l. |
Na | b.d.l. 1 | b.d.l. | b.d.l. | b.d.l. | 92 | 90 |
Al | 37.82 | 43.16 | 45.21 | 48.94 | 27 | 23 |
P | 118.2 | 120.18 | 135.78 | 142.24 | 38 | 43 |
Ca | b.d.l. | b.d.l. | b.d.l. | b.d.l. | 74 | 58 |
Sc | 1.22 | 1.247 | 1.249 | 1.25 | 0.58 | 0.76 |
Ti | 9.58 | 6.51 | 9.61 | 4.17 | 165 | 35 |
V | 0.587 | 0.609 | 0.614 | 0.654 | 3.8 | 2.9 |
Cr | b.d.l. | b.d.l. | b.d.l. | b.d.l. | 88 | 102 |
Mn | 200.71 | 201.72 | 203.69 | 210.69 | 610 | 636 |
Co | 0.592 | 0.594 | 0.604 | 0.613 | 127 | 121 |
Ni | 0.914 | 0.928 | 0.944 | 0.974 | 2890 | 2868 |
Cu | b.d.l. | b.d.l. | b.d.l. | b.d.l. | 1.52 | 1.10 |
Zn | 43.92 | 43.96 | 45.49 | 46.34 | 56 | 42 |
Ga | 0.271 | 0.29 | 0.3 | 0.301 | b.d.l. | b.d.l. |
Sr | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. |
Y | 0.0675 | 0.07 | 0.0736 | 0.0738 | 0.02 | b.d.l. |
Zr | 1.002 | 1.134 | 1.148 | 1.95 | 0.21 | 0.19 |
Nb | 0.119 | 0.1232 | 0.1392 | 0.146 | 0.26 | 0.015 |
Ce | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. |
Bond Distance/Å | Bond Angle | |
---|---|---|
(O3–Mg1–O2) = 85.02(7) | ||
(O2–Mg1–O1) = 86.53(7) | ||
(O2–Mg1–O3) = 94.98(7) | ||
(O2–Mg1–O1) = 93.47(7) | ||
(Mg1–O1)[2] = 2.0622(14) Å | (O3–Mg1–O2) = 94.98(7) | |
octahedra | (Mg1–O2)[2] = 2.0816(16) Å | (O1–Mg1–O2) = 93.47(7) |
M1 | (Mg1–O3)[2] = 2.1283(14) Å | (O3–Mg1–O2) = 85.02(7) |
(O1–Mg1–O2) = 86.53(7) | ||
Average 2.0907 | (O1–Mg1–O3) = 105.06(7) | |
(O3–Mg1–O1) = 105.06(7) | ||
(O3–Mg1–O1) = 74.94(7) | ||
(O3–Mg1–O1) = 74.94(7) | ||
Average 90 | ||
(O1–Mg2–O3) = 96.76(7) | ||
(O3–Mg2–O3) = 88.83(4) | ||
(O3–Mg2–O2) = 80.97(7) | ||
(Mg2–O1)[1] = 2.049(3) Å | (O3–Mg2–O3) = 71.65(8) | |
(Mg2–O2)[1] = 2.175(3) Å | (O1–Mg2–O3) = 90.79(6) | |
octahedra | (Mg2–O3)[2] = 2.2068(16) Å | (O3–Mg2–O3) = 109.93(9) |
M2 | (Mg2–O3′)[2] = 2.0674(14) Å | (O2–Mg2–O3) = 90.82(6) |
(O3–Mg2–O3) = 88.83(4) | ||
(O1–Mg2–O3) = 90.79(6) | ||
Average 2.1286 | (O3–Mg2–O2) = 90.82(6) | |
(O2–Mg2–O3) = 80.97(7) | ||
(O1–Mg2–O3) = 96.76(7) | ||
Average 89.83 | ||
(Si–O3) = 1.6312(14) Å | (O3–Si–O2) = 116.09(7) | |
(Si–O1) = 1.656(3) Å | (O2–Si–O1) = 114.46(11) | |
tetrahedron | (Si–O2) = 1.613(3) Å | (O1–Si–O3) = 101.75(7) |
T | (Si–O3) = 1.6312(14) Å | (O3–Si–O3) = 104.72(11) |
(O2–Si–O3) = 116.09(7) | ||
Average 1.6327 | (O1–Si–O3) = 101.75(7) | |
Average 109.15 |
Band (cm−1) | Symmetry | Assignment | |
---|---|---|---|
B-Rich Olivine (Fo = 99) | B-Free Olivine (Fo = 91) | ||
227 | 220 | Ag | SiO4 translation |
305 | 300 | Ag | M2 translation |
437 | 433 | B1g | v2 |
544 | 540 | Ag | v4 |
586 | 581 | B2g | v4 |
609 | 603 | Ag | v4 |
824 | 820 | Ag | v1 + v3 |
857 | 852 | Ag | v1 + v3 |
882 | 878 | B2g | v3 |
919 | 916 | B3g | v3 |
965 | 958 | Ag | v3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, B.; He, M.; Yang, M.; Wu, S.; Fan, J. Natural Forsterite Strongly Enriched in Boron: Crystal Structure and Spectroscopy. Crystals 2022, 12, 975. https://doi.org/10.3390/cryst12070975
Peng B, He M, Yang M, Wu S, Fan J. Natural Forsterite Strongly Enriched in Boron: Crystal Structure and Spectroscopy. Crystals. 2022; 12(7):975. https://doi.org/10.3390/cryst12070975
Chicago/Turabian StylePeng, Bijie, Mingyue He, Mei Yang, Shaokun Wu, and Jingxin Fan. 2022. "Natural Forsterite Strongly Enriched in Boron: Crystal Structure and Spectroscopy" Crystals 12, no. 7: 975. https://doi.org/10.3390/cryst12070975
APA StylePeng, B., He, M., Yang, M., Wu, S., & Fan, J. (2022). Natural Forsterite Strongly Enriched in Boron: Crystal Structure and Spectroscopy. Crystals, 12(7), 975. https://doi.org/10.3390/cryst12070975