The Behavior of Water in Orthoclase Crystal and Its Implications for Feldspar Alteration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. Raman Spectra with Increasing Pressure
3.2. FTIR Spectra with Increasing Pressure
3.3. FTIR Spectra in Different Crystallography Direction at 1 atm
4. Discussion
4.1. The Mechanism of Hydrogen in Feldspar
4.2. The Speciation of Hydrogen in Orthoclase
4.3. Implications for Feldspar Alteration, Micropores/Microstructure, and Crustal Process
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yuan, G.; Cao, Y.; Schulz, H.-M.; Hao, F.; Gluyas, J.; Liu, K.; Yang, T.; Wang, Y.; Xi, K.; Li, F. A review of feldspar alteration and its geological significance in sedimentary basins: From shallow aquifers to deep hydrocarbon reservoirs. Earth-Sci. Rev. 2019, 191, 114–140. [Google Scholar] [CrossRef]
- Parsons, I. Feldspars and Their Reactions; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Solé, J.; Pi-Puig, T.; Ortega-Rivera, A. A Mineralogical, Geochemical, and Geochronological Study of ‘Valencianite’ from La Valenciana Mine, Guanajuato, Mexico. Minerals 2021, 11, 741. [Google Scholar] [CrossRef]
- Machatschki, F. The structure and constitution of feldspars. Centr. Min. Abt. A 1928, 8, 97–104. [Google Scholar]
- Jones, J. Order in alkali feldspars. Nature 1966, 210, 1352–1353. [Google Scholar] [CrossRef]
- Stewart, D.; Ribbe, P. Structural explanation for variations in cell parameters of alkali feldspar with Al/Si ordering. Am. J. Sci. 1969, 267, 444–462. [Google Scholar]
- Taylor, W.H.; Darbyshire, J.A.; Strunz, H. An X-ray investigation of the feldspars. ZK 1934, 87, 35. [Google Scholar]
- Deer, W.A.; Howie, R.; Zussman, J. Rock-Forming Minerals, Volume 4A: Framework Silicates–Feldspars; The Geological Society: London, UK, 2001; Volume viii, p. 972. [Google Scholar]
- Smith, J.V. Feldspar Minerals: Crystal Structure and Physical Properties 1; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Smith, J.V. Feldspar Minerals: In Three Volumes. 2. Chemical and Textural Properties; Springer: Berlin/Heidelberg, Germany, 1974. [Google Scholar]
- Brown, W.L. Feldspars and Feldspathoids: Structures, Properties and Occurrences; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Lu, A.; Huang, S.; Liu, R.; Zhao, D.; Qin, S. Environmental Effects of Micro- and Ultra-microchannel Structures of Natural Minerals. Acta Geol. Sin.-Engl. Ed. 2006, 80, 161–169. [Google Scholar]
- Shamloo, H.I.; Till, C.B.; Hervig, R.L. Multi-mode magnesium diffusion in sanidine: Applications for geospeedometry in magmatic systems. Geochim. Cosmochim. Acta 2021, 298, 55–69. [Google Scholar] [CrossRef]
- Dietrich, R. K-feldspar structural states as petrogenetic indicators. Nor. Geol. Tidsskr. Bind. 1962, 42, 394–414. [Google Scholar]
- Ragland, P.C. Composition and structural state of the potassic phase in perthites as related to petrogenesis of a granitic pluton. Lithos 1970, 3, 167–189. [Google Scholar] [CrossRef]
- Parsons, I.; Gerald, J.D.F.; Lee, M.R. Routine characterization and interpretation of complex alkali feldspar intergrowths. Am. Mineral. 2015, 100, 1277–1303. [Google Scholar] [CrossRef]
- Walker, F.D.L.; Lee, M.R.; Parsons, I. Micropores and micropermeable texture in alkali feldspars: Geochemical and geophysical implications. Mineral. Mag. 1995, 59, 505–534. [Google Scholar] [CrossRef]
- Mamonov, A.; Puntervold, T.; Strand, S.; Hetland, B.; Andersen, Y.; Wealth, A.; Nadeau, P.H. Contribution of feldspar minerals to pH during Smart Water EOR processes in sandstones. Energy Fuels 2019, 34, 55–64. [Google Scholar] [CrossRef]
- Yun, J.; Kumar, A.; Removski, N.; Shchukarev, A.; Link, N.; Boily, J.-F.; Bertram, A.K. Effects of Inorganic Acids and Organic Solutes on the Ice Nucleating Ability and Surface Properties of Potassium-Rich Feldspar. ACS Earth Space Chem. 2021, 5, 1212–1222. [Google Scholar] [CrossRef]
- Choudhary, A.; Khandelwal, N.; Singh, N.; Tiwari, E.; Ganie, Z.A.; Darbha, G.K. Nanoplastics interaction with feldspar and weathering originated secondary minerals (kaolinite and gibbsite) in the riverine environment. Sci. Total Environ. 2022, 818, 151831. [Google Scholar] [CrossRef] [PubMed]
- Wollast, R. Kinetics of the alteration of K-feldspar in buffered solutions at low temperature. Geochim. Cosmochim. Acta 1967, 31, 635–648. [Google Scholar] [CrossRef]
- Duan, G.; Ram, R.; Xing, Y.; Etschmann, B.; Brugger, J. Kinetically driven successive sodic and potassic alteration of feldspar. Nat. Commun. 2021, 12, 4435. [Google Scholar] [CrossRef]
- Engelhardt, W.V.; Matthäi, S.K.; Walzebuck, J. Araguainha impact crater, Brazil. I. The interior part of the uplift. Meteoritics 1992, 27, 442–457. [Google Scholar] [CrossRef]
- Wibberley, C. Are feldspar-to-mica reactions necessarily reaction-softening processes in fault zones? JSG 1999, 21, 1219–1227. [Google Scholar] [CrossRef]
- Kawano, M.; Tomita, K. Formation of mica during experimental alteration of K-feldspar. Clays Clay Miner. 1995, 43, 397–405. [Google Scholar] [CrossRef]
- Garrels, R.; Howard, P. Reactions of feldspar and mica with water at low temperature and pressure. Clays Clay Miner. 1957, 6, 68–88. [Google Scholar] [CrossRef]
- Patterson, D.E.; Margrave, J.L. The use of gem-cut cubic zirconia in the diamond anvil cell. J. Phys. Chem. 1990, 94, 1094–1096. [Google Scholar] [CrossRef]
- Chen, J.; Zheng, H.; Xiao, W.; Zeng, Y. High-temperature and high-pressure cubic zirconia anvil cell for Raman spectroscopy. Appl. Spectrosc. 2003, 57, 1295–1299. [Google Scholar] [CrossRef] [PubMed]
- Grocholski, B.; Jeanloz, R. High-pressure and-temperature viscosity measurements of methanol and 4: 1 methanol: Ethanol solution. J. Chem. Phys. 2005, 123, 204503. [Google Scholar] [CrossRef]
- Eggert, J.H.; Xu, L.; Che, R.; Chen, L.; Wang, J. High pressure refractive index measurements of 4: 1 methanol: Ethanol. J. Appl. Phys. 1992, 72, 2453–2461. [Google Scholar] [CrossRef]
- Lemos, V.; Camargo, F. Effects of pressure on the Raman spectra of a 4: 1 methanol–ethanol mixture. J. Raman Spectrosc. 1990, 21, 123–126. [Google Scholar] [CrossRef]
- Hazen, R. Zeolite molecular sieve 4A: Anomalous compressibility and volume discontinuities at high pressure. Science 1983, 219, 1065–1067. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Vogt, T.; Hriljac, J.A.; Parise, J.B.; Hanson, J.C.; Kim, S.J. Non-framework cation migration and irreversible pressure-induced hydration in a zeolite. Nature 2002, 420, 485–489. [Google Scholar] [CrossRef]
- Angel, R.J.; Bujak, M.; Zhao, J.; Gatta, G.D.; Jacobsen, S.D. Effective hydrostatic limits of pressure media for high-pressure crystallographic studies. J. Appl. Crystallogr. 2007, 40, 26–32. [Google Scholar] [CrossRef]
- Goncharov, A.F. Raman spectroscopy at high pressures. Int. J. Spectrosc. 2012, 2012, 617528. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.K. Raman spectroscopy at very high pressures. Raman Scatt. Lumin. Spectrosc. Instrum. Technol. 1989, 1055, 105–116. [Google Scholar]
- Schmidt, C.; Ziemann, M.A. In-situ Raman spectroscopy of quartz: A pressure sensor for hydrothermal diamond-anvil cell experiments at elevated temperatures. Am. Mineral. 2000, 85, 1725–1734. [Google Scholar] [CrossRef]
- Deer, W.A. Rock-Forming Minerals. 2011. Available online: https://books.google.co.uk/books?hl=zh-CN&lr=lang_en&id=2GLGx6A0d0UC&oi=fnd&pg=PR5&dq=Rock-Forming+Minerals&ots=o-Nx3qJx35&sig=yh_WekveZ2g6e7JZvFCvlhnOiKE#v=onepage&q&f=false (accessed on 6 June 2022).
- Mernagh, T. Use of the laser Raman microprobe for discrimination amongst feldspar minerals. J. Raman Spectrosc. 1991, 22, 453–457. [Google Scholar] [CrossRef]
- Freeman, J.J.; Wang, A.; Kuebler, K.E.; Jolliff, B.L.; Haskin, L.A. Characterization of natural feldspars by Raman spectroscopy for future planetary exploration. Can. Mineral. 2008, 46, 1477–1500. [Google Scholar] [CrossRef]
- Sharma, S.K.; Simons, B.; Yoder, H. Raman study of anorthite, calcium Tschermak’s pyroxene, and gehlenite in crystalline and glassy states. Am. Mineral. 1983, 68, 1113–1125. [Google Scholar]
- Ostertag, R. Shock experiments on feldspar crystals. J. Geophys. Res. Solid Earth 1983, 88, B364–B376. [Google Scholar] [CrossRef]
- Kyono, A.; Ahart, M.; Yamanaka, T.; Gramsch, S.; Mao, H.-k.; Hemley, R.J. High-pressure Raman spectroscopic studies of ulvospinel Fe2TiO4. Am. Mineral. 2011, 96, 1193–1198. [Google Scholar] [CrossRef]
- Ruiz-Fuertes, J.; Errandonea, D.; López-Moreno, S.; González, J.; Gomis, O.; Vilaplana, R.; Manjón, F.; Muñoz, A.; Rodríguez-Hernández, P.; Friedrich, A. High-pressure Raman spectroscopy and lattice-dynamics calculations on scintillating MgWO4: Comparison with isomorphic compounds. Phys. Rev. B 2011, 83, 214112. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.; Zhao, S.; Huang, Q.; Davies, G.; Mo, X. The microstructure of silicate varying with crystal and melt properties under the same cooling condition. Mater. Res. Bull. 2004, 39, 939–948. [Google Scholar] [CrossRef]
- Holtz, F.; Bény, J.-M.; Mysen, B.O.; Pichavant, M. High-temperature Raman spectroscopy of silicate and aluminosilicate hydrous glasses: Implications for water speciation. Chem. Geol. 1996, 128, 25–39. [Google Scholar] [CrossRef]
- Makreski, P.; Jovanovski, G.; Kaitner, B. Minerals from Macedonia. XXIV. Spectra-structure characterization of tectosilicates. J. Mol. Struct. 2009, 924, 413–419. [Google Scholar] [CrossRef]
- Galeener, F.L.; Mikkelsen, J., Jr. Vibrational dynamics in 18O-substituted vitreous SiO2. Phys. Rev. B 1981, 23, 5527. [Google Scholar] [CrossRef]
- Johnson, E.A.; Rossman, G.R. A survey of hydrous species and concentrations in igneous feldspars. Am. Mineral. 2004, 89, 586–600. [Google Scholar] [CrossRef]
- Seaman, S.J.; Dyar, M.D.; Marinkovic, N.; Dunbar, N.W. An FTIR study of hydrogen in anorthoclase and associated melt inclusions. Am. Mineral. 2006, 91, 12–20. [Google Scholar] [CrossRef]
- Wilkins, R.; Sabine, W. Water content of some nominally anhydrous silicates. Am. Mineral. J. Earth Planet. Mater. 1973, 58, 508–516. [Google Scholar]
- Kronenberg, A.K.; Yund, R.A.; Rossman, G.R. Stationary and mobile hydrogen defects in potassium feldspar. Geochim. Cosmochim. Acta 1996, 60, 4075–4094. [Google Scholar] [CrossRef]
- Lehmann, G. Spectroscopy of Feldspars. Feldspars and Feldspathoids; Springer: Berlin/Heidelberg, Germany, 1984; pp. 121–162. [Google Scholar]
- Hofmeister, A.M.; Rossman, G.R. A spectroscopic study of irradiation coloring of amazonite: Structurally hydrous, Pb-bearing feldspar. Am. Mineral. 1985, 70, 794–804. [Google Scholar]
- Hofmeister, A.M.; Rossman, G.R. A model for the irradiative coloration of smoky feldspar and the inhibiting influence of water. Phys. Chem. Miner. 1985, 12, 324–332. [Google Scholar] [CrossRef]
- Xia, Q.; Pan, Y.; Chen, D.; Kohn, S.; Zhi, X.; Guo, L.; Cheng, H.; Wu, Y. Structural water in anorthoclase megacrysts from alkalic basalts: FTIR and NMR study. Acta Petrol. Sin. 2000, 16, 485–491. [Google Scholar]
- Rossman, G. Studies of OH in nominally anhydrous minerals. Phys. Chem. Miner. 1996, 23, 299–304. [Google Scholar] [CrossRef]
- Yang, X. An experimental study of H solubility in feldspars: Effect of composition, oxygen fugacity, temperature and pressure and implications for crustal processes. Geochim. Cosmochim. Acta 2012, 97, 46–57. [Google Scholar] [CrossRef]
- Smith, J.V. Feldspar Minerals: 2 Chemical and Textural Properties; Springer Science & Business Media. Available online: https://books.google.co.uk/books?hl=zh-CN&lr=lang_en&id=IObtCAAAQBAJ&oi=fnd&pg=PA3&dq=Feldspar+Minerals:+2+Chemical+and+Textural+Properties%3B+Springer+Science+%26+Business+Media&ots=RTL4w_rdrJ&sig=OqHau4WuboNuzeH2ooV_zwtKlOc#v=onepage&q=Feldspar%20Minerals%3A%202%20Chemical%20and%20Textural%20Properties%3B%20Springer%20Science%20%26%20Business%20Media&f=false (accessed on 5 June 2022).
- Beran, A. A model of water allocation in alkali feldspar, derived from infrared-spectroscopic investigations. Phys. Chem. Miner. 1986, 13, 306–310. [Google Scholar] [CrossRef]
- Marcus, Y. On Water Structure in Concentrated Salt Solutions. J. Solut. Chem. 2009, 38, 513–516. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Baur, W.H.; Joswig, W.; Müller, G. Mechanics of the feldspar framework; Crystal structure of Li-feldspar. J. Solid State Chem. 1996, 121, 12–23. [Google Scholar] [CrossRef]
- Hemley, R.; Mao, H.; Bell, P.; Mysen, B. Raman spectroscopy of SiO2 glass at high pressure. Phys. Rev. Lett. 1986, 57, 747. [Google Scholar] [CrossRef]
- Que, M.; Allen, A.R. Sericitization of plagioclase in the Rosses granite complex, Co. Donegal, Ireland. Mineral. Mag. 1996, 60, 927–936. [Google Scholar] [CrossRef]
- Zuo, H.; Lu, A.; Gu, X.; Ma, W.; Cui, Y.; Yi, L.; Lei, H.; Wang, Z.; Zhang, D.; Liu, J. Typomorphic feature of chromium sericite in granite hosted gold deposits in Jiaodong Peninsula, China. Appl. Clay Sci. 2016, 119, 49–58. [Google Scholar] [CrossRef]
- Verati, C.; Jourdan, F. Modelling effect of sericitization of plagioclase on the 40K/40Ar and 40Ar/39Ar chronometers: Implication for dating basaltic rocks and mineral deposits. Geol. Soc. Lond. Spec. Publ. 2014, 378, 155–174. [Google Scholar] [CrossRef]
Samples | SiO2 | Al2O3 | Na2O | K2O | CaO | MgO | FeO | MnO | BaO | Or | Ab | An |
---|---|---|---|---|---|---|---|---|---|---|---|---|
colorless | 55.97 | 27.53 | 6.19 | 10.03 | 0.01 | 0.06 | 0.05 | 0.02 | 0.01 | 51.6 | 48.3 | 0.1 |
pink | 54.67 | 28.33 | 6.43 | 9.26 | 0.61 | 0.06 | 0.25 | 0.05 | 0.02 | 47.7 | 49.6 | 2.7 |
Wavenumber of quartz (cm−1) | 464 | 465.10 | 466.73 | 467.56 | 468.60 | 469.38 |
Pressure (MPa) | 0.1 | 122.38 | 305.34 | 399.23 | 517.59 | 606.87 |
M–O vibrational peak (cm−1) | 432.33 | 433.02 | 433.20 | 433.50 | 433.50 | 434.83 |
AlⅣ–O–Si vibrational peak (cm−1) | 507.27 | 507.43 | 507.80 | 508.46 | 508.13 | 509.46 |
[SiO4] vibrational peak (cm−1) | 796.69 | 797.07 | 795.47 | 792.80 | 797.07 | 798.40 |
Samples | Polarized Directions | Pressure | Wavenumber(cm−1) | Integral Absorbance * (cm−1) | Normalized Integral Absorbance * (cm−2) |
---|---|---|---|---|---|
Pink orthoclase | Perpendicular to (001) | 1 atm | 3420 | 17.98 | 1383 |
300 MPa | 3420 | 19.89 | 1904 | ||
600 MPa | 3410 | 20.92 | 2001 | ||
Colorless orthoclase | Perpendicular to (001) | 1 atm | 3420 | 1.50 | 120 |
300 MPa | 3310 | 11.32 | 1124 | ||
600 MPa | 3290 | 14.54 | 1570 |
Sample | Polarized Directions | Conditions | Wavenumber (cm−1) | Integral Absorbance * (cm−1) | Normalized Integral Absorbance * (cm−2) |
---|---|---|---|---|---|
Colorless Orthoclase | Nearly perpendicular to (100) | 1 atm, room temperature | 3420 | 18.19 | 1365.3 |
Perpendicular to (010) | 3420, 3619 | 19.40 | 1434 | ||
Perpendicular to (001) | 3418 | 20.86 | 1717.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, H.; Liu, R.; Lu, A. The Behavior of Water in Orthoclase Crystal and Its Implications for Feldspar Alteration. Crystals 2022, 12, 1042. https://doi.org/10.3390/cryst12081042
Zuo H, Liu R, Lu A. The Behavior of Water in Orthoclase Crystal and Its Implications for Feldspar Alteration. Crystals. 2022; 12(8):1042. https://doi.org/10.3390/cryst12081042
Chicago/Turabian StyleZuo, Hongyan, Rui Liu, and Anhuai Lu. 2022. "The Behavior of Water in Orthoclase Crystal and Its Implications for Feldspar Alteration" Crystals 12, no. 8: 1042. https://doi.org/10.3390/cryst12081042
APA StyleZuo, H., Liu, R., & Lu, A. (2022). The Behavior of Water in Orthoclase Crystal and Its Implications for Feldspar Alteration. Crystals, 12(8), 1042. https://doi.org/10.3390/cryst12081042