Computational Analysis of Hydrogen Bond Vibrations of Ice III in the Far-Infrared Band
Abstract
:1. Introduction
2. Computational Method
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, R.; Cao, D.; Zhu, C.; Tian, Y.; Peng, J.; Guo, J.; Chen, J.; Li, X.Z.; Francisco, J.S.; Zeng, X.C.; et al. Atomic imaging of the edge structure and growth of a two-dimensional hexagonal ice. Nature 2020, 577, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Millot, M.; Coppari, F.; Rygg, J.R.; Barrios, A.C.; Hamel, S.; Swift, D.C.; Eggert, J.H. Nanosecond X-ray diffraction of shock-compressed superionic water ice. Nature 2019, 569, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Moberg, D.R.; Sharp, P.J.; Paesani, F. Molecular-level interpretation of vibrational spectra of ordered ice phases. J. Phys. Chem. B 2018, 122, 10572–10581. [Google Scholar] [CrossRef]
- Komatsu, K.; Klotz, S.; Machida, S.; Sano-Furukawa, A.; Hattori, T.; Kagi, H. Anomalous hydrogen dynamics of the ice VII-VIII transition revealed by high-pressure neutron diffraction. Proc. Natl. Acad. Sci. USA 2020, 117, 6356–6361. [Google Scholar] [CrossRef] [PubMed]
- Salzmanna, C.G. Advances in the experimental exploration of water’s phase diagram. J. Chem. Phys. 2019, 150, 060901. [Google Scholar] [CrossRef]
- Bertie, J.E.; Whalley, E.; Calvert, L.D. Transformations of ice II, ice III, and ice V at atmospheric pressure. J. Chem. Phys. 1963, 38, 840–846. [Google Scholar] [CrossRef]
- Svishchev, I.M.; Kusalik, P.G. Quartzlike polymorph of ice. Phys. Rev. B 1996, 53, R8815. [Google Scholar] [CrossRef] [Green Version]
- Bauer, M.; Elsaesser, M.S.; Winkel, K.; Mayer, E.; Loerting, T. Compression-rate dependence of the phase transition from hexagonal ice to ice II and/or ice III. Phys. Rev. B 2008, 77, 220105. [Google Scholar] [CrossRef] [Green Version]
- Bridgman, P.W. Water, in the liquid and five solid forms, under pressure. Proc. Amer. Acad. Arts 1912, 47, 441–558. [Google Scholar] [CrossRef]
- Tammann, G. Ueber die Grenzen des festen Zustandes IV. Ann. Phys.-Berlin 1900, 307, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Whalley, E.; Heath, J.B.R.; Davidson, D.W. Ice IX–an antiferroelectric phase related to ice III. J. Chem. Phys. 1968, 48, 2362–2370. [Google Scholar] [CrossRef]
- Nishibata, K.; Whalley, E. Thermal effects of transformation ice III-IX. J. Chem. Phys. 1974, 60, 3189–3194. [Google Scholar] [CrossRef]
- Knight, C.; Singer, S.J. A reexamination of the ice III/IX hydrogen bond ordering phase transition. J. Chem. Phys. 2006, 125, 064506. [Google Scholar] [CrossRef] [PubMed]
- Sharif, Z.; Shephard, J.J.; Slater, B.; Bull, C.L.; Hart, M.; Salzmann, C.G. Effect of ammonium fluoride doping on the ice III to ice IX phase transition. J. Chem. Phys. 2021, 154, 114502. [Google Scholar] [CrossRef]
- Li, J. Inelastic neutron scattering studies of hydrogen bonding in ices. J. Chem. Phys. 1996, 105, 6733–6755. [Google Scholar] [CrossRef]
- Li, J.C.; Londono, J.D.; Ross, D.K.; Finney, J.L.; Tomkinson, J.; Sherman, W.F. An inelastic incoherent neutron-scattering study of ice II, ice-IX, ice-V, and ice-VI–in the range from 2 to 140 meV. J. Chem. Phys. 1991, 94, 6770–6775. [Google Scholar] [CrossRef]
- Schober, H.; Koza, M.; Tölle, A.; Fujara, F.; Angell, C.; Böhmer, R. Amorphous polymorphis in ice investigated by inelastic neutron scattering. Phys. B 1997, 241, 897–902. [Google Scholar] [CrossRef]
- Qin, X.L.; Zhu, X.L.; Cao, J.W.; Wang, H.C.; Zhang, P. Investigation of hydrogen bond vibrations of ice. Acta Phys. Sin. 2021, 70, 146301. [Google Scholar] [CrossRef]
- Zhu, X.L.; Cao, J.W.; Qin, X.L.; Jiang, L.; Gu, Y.; Wang, H.C.; Liu, Y.; Kolesnikov, A.I.; Zhang, P. Origin of two distinct peaks of ice in the Thz region and its application for natural gas hydrate dissociation. J. Phys. Chem. C 2019, 124, 1165–1170. [Google Scholar] [CrossRef]
- Zhao, Z.J.; Qin, X.L.; Cao, J.W.; Zhu, X.L.; Yang, Y.C.; Wang, H.C.; Zhang, P. Computing investigations of molecular and atomic vibrations of ice IX. ACS Omega 2019, 4, 18936–18941. [Google Scholar] [CrossRef]
- Yuan, Z.Y.; Zhang, P.; Yao, S.k.; Lu, Y.-B.; Yang, H.Z.; Luo, H.W.; Zhao, Z.J. Computational assignments of lattice vibrations of ice Ic. RSC Adv. 2017, 7, 36801–36806. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, M.; Yagasaki, T.; Tanaka, H. Genice: Hydrogen-disordered ice generator. J. Comput. Chem. 2018, 39, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Bernal, J.D.; Fowler, R.H. A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J. Chem. Phys. 1933, 1, 515–548. [Google Scholar] [CrossRef]
- Yuan, X.Q.; Yu, X.H.; Zhu, X.L.; Wang, X.C.; Liu, X.Y.; Cao, J.W.; Qin, X.L.; Zhang, P. Comparative analysis of the hydrogen bond vibrations of ice XII. ACS Omega 2022, 7, 2970–2974. [Google Scholar] [CrossRef] [PubMed]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.J.; Refson, K.; Payne, M.C. First principles methods using castep. Z. Kristall. 2005, 220, 567–570. [Google Scholar] [CrossRef] [Green Version]
- Smirnov, L.S.; Ivanov, A.N.; Kolesnikov, A.I.; Natkaniec, I. “In situ” neutron scattering studies of ice under high pressure. High Press. Res. 1999, 16, 187–199. [Google Scholar] [CrossRef]
- Taylor, M.; Whalley, E. Raman spectra of ices Ih, Ic, II, III, and V. J. Chem. Phys. 1964, 40, 1660–1664. [Google Scholar] [CrossRef]
- Kruger, Y.; Mercury, L.; Canizares, A.; Marti, D.; Simon, P. Metastable phase equilibria in the ice II stability field. A Raman study of synthetic high-density water inclusions in quartz. Phys. Chem. Chem. Phys. 2019, 21, 19554–19566. [Google Scholar] [CrossRef] [Green Version]
- Grabowski, S. Intramolecular hydrogen bond energy and its decomposition—O–H∙∙∙O interactions. Crystals 2020, 11, 5. [Google Scholar] [CrossRef]
- Cao, J.W.; Zhu, X.L.; Wang, H.C.; Qin, X.L.; Yuan, X.Q.; Wang, X.C.; Yu, J.L.; Ma, X.T.; Li, M.M.; Zhang, P. A strategy for the analysis of the far-infrared vibrational modes of hydrogen-disordered ice V. J. Phys. Chem. C 2021, 125, 7913–7918. [Google Scholar] [CrossRef]
- Johari, G.P. The dipolar correlation factor and dipole moment of a water molecule in ice III. Philos. Mag. B-Phys. Condens. Matter Stat. Mech. Electron. Opt. Magn. Prop. 2006, 39, 219–228. [Google Scholar] [CrossRef]
- Applegate, L.C.; Forbes, T.Z. Controlling water structure and behavior: Design principles from metal organic nanotubular materials. Crystengcomm 2020, 22, 3406–3418. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ning, S.-Y.; Cao, J.-W.; Liu, X.-Y.; Wu, H.-J.; Yuan, X.-Q.; Dong, X.-T.; Li, Y.-N.; Jiang, Y.; Zhang, P. Computational Analysis of Hydrogen Bond Vibrations of Ice III in the Far-Infrared Band. Crystals 2022, 12, 910. https://doi.org/10.3390/cryst12070910
Ning S-Y, Cao J-W, Liu X-Y, Wu H-J, Yuan X-Q, Dong X-T, Li Y-N, Jiang Y, Zhang P. Computational Analysis of Hydrogen Bond Vibrations of Ice III in the Far-Infrared Band. Crystals. 2022; 12(7):910. https://doi.org/10.3390/cryst12070910
Chicago/Turabian StyleNing, Si-Yuan, Jing-Wen Cao, Xiao-Yan Liu, Hao-Jian Wu, Xiao-Qing Yuan, Xiao-Tong Dong, Yi-Ning Li, Yan Jiang, and Peng Zhang. 2022. "Computational Analysis of Hydrogen Bond Vibrations of Ice III in the Far-Infrared Band" Crystals 12, no. 7: 910. https://doi.org/10.3390/cryst12070910
APA StyleNing, S. -Y., Cao, J. -W., Liu, X. -Y., Wu, H. -J., Yuan, X. -Q., Dong, X. -T., Li, Y. -N., Jiang, Y., & Zhang, P. (2022). Computational Analysis of Hydrogen Bond Vibrations of Ice III in the Far-Infrared Band. Crystals, 12(7), 910. https://doi.org/10.3390/cryst12070910