Trapping Capability of Small Vacancy Clusters in the α-Zr Doped with Alloying Elements: A First-Principles Study
Abstract
:1. Introduction
2. Methodology
3. Result and Discussion
3.1. The Formation Energy for Vn and Trapping Energy for Vn–X
3.2. Atomic Structures and Charge Density Distribution
3.3. Total Electronic Densities of States (TDOS)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Njifon, I.C.; Torres, E. A first principles investigation of the hydrogen-strain synergy on the formation and phase transition of hydrides in zirconium. Acta Mater. 2021, 202, 222–231. [Google Scholar] [CrossRef]
- Sklenicka, V.; Kral, P.; Kucharova, K.; Kvapilova, M.; Dvorak, J.; Kloc, L. Thermal creep fracture of a Zr1%Nb cladding alloy in the α and (α+β) phase regions. J. Nucl. Mater. 2021, 553, 152950. [Google Scholar] [CrossRef]
- Liu, J.; He, G.; Callow, A.; Li, K.; Moore, K.L.; Nordin, H.; Moody, M.; Lozano-Perez, S.; Grovenor, C.R.; Cuddihy, M.A.; et al. The role of β-Zr in a Zr-2.5Nb alloy during aqueous corrosion: A multi-technique study. Acta Mater. 2021, 215, 117042. [Google Scholar] [CrossRef]
- Hatami, F.; Feghhi, S.A.H.; Arjhangmehr, A.; Esfandiarpour, A. Interaction of primary cascades with different atomic grain boundaries in α-Zr: An atomic scale study. J. Nucl. Mater. 2016, 480, 362–373. [Google Scholar] [CrossRef]
- Arjhangmehr, A.; Feghhi, S.A.H. Irradiation deformation near different atomic grain boundaries in α-Zr: An investigation of thermodynamics and kinetics of point defects. Sci. Rep. 2016, 6, 23333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, W.; Tian, J.; Zheng, J.; Xue, J.; Peng, S. Dislocation-enhanced experimental-scale vacancy loop formation in hcp Zirconium in one single collision cascade. Sci. Rep. 2016, 6, 21034. [Google Scholar] [CrossRef]
- Varvenne, C.; Mackain, O.; Clouet, E. Vacancy clustering in zirconium: An atomic-scale study. Acta Mater. 2014, 78, 65–77. [Google Scholar] [CrossRef] [Green Version]
- Salman, S.; Rekik, N.; Abuzir, A.; Alshoaibi, A.; Suleiman, J. The effect of an external electric field on the electronic properties of defective CBN nanotubes: A density functional theory approach. Crystals 2022, 12, 321. [Google Scholar] [CrossRef]
- Pan, R.; Tang, A.; Wang, Y.; Wu, X.; Wu, L. Effect of alloying elements (Sn, Fe, Cr, Nb) on mechanical properties of zirconium: Generalized stacking-fault energies from first-principles calculations. Comput. Condens. Matter 2017, 10, 22–24. [Google Scholar] [CrossRef]
- Pan, R.; Tang, A.; Wu, X.; Wu, L.; He, W. Effect of the evolution of electronic properties on twin-boundary segregation energies of zirconium form first-principles calculations. Mater. Lett. 2017, 204, 112–114. [Google Scholar] [CrossRef]
- Pan, R.; Tang, A.; Wu, X.; Wu, L.; He, W.; Wen, B.; Zheng, T.; Wang, H. Effect of nonmetallic solutes on the stability of {10–12} tension twin boundary of zirconium: A first-principles study. Eur. Phys. J. B 2019, 92, 127. [Google Scholar] [CrossRef]
- Kharchenko, V.O.; Wu, X.; Wen, B.; Wu, L.; Zhang, W. An atomic sacle study of structural and electronic properties for α-zirconium with single vacancies and vacancy clusters. Metallofiz. Noveishie Tekhnol. 2016, 38, 1195–1212. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef] [Green Version]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 7, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Blöchl, P.E.; Jepsen, O.; Andersen, O.K. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 1994, 49, 16223–16233. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188. [Google Scholar] [CrossRef]
- Sampedro, J.M.; del Rio, E.; Caturla, M.J.; Caro, A.; Caro, M.; Perlado, J.M. Stability of vacancy clusters in FeCr alloys: A study of the Cr concentration dependence. Nucl. Instrum. Methods B 2013, 303, 46–50. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.B.; Ou, X.; Zhang, Y.; Shu, X.L.; Liu, Y.L.; Lu, G.H. Effect of carbon on helium trapping in tungsten: A first-principles investigation. J. Nucl. Mater. 2013, 440, 338–343. [Google Scholar] [CrossRef]
- Dean, J.A. (Ed.) Lange’s Handbook of Chemistry, 16th ed.; McGraw-Hill: New York, NY, USA, 2005. [Google Scholar]
- Patton, D.C.; Porezag, D.V.; Pederson, M.R. Simplified generalized-gradient approximation and anharmonicity: Benchmark calculations on molecules. Phys. Rev. B 1997, 55, 7454–7459. [Google Scholar] [CrossRef]
Vn–X | Trapping Energies |
---|---|
V2–Sn (Sn in the V1 or V2 site) | −0.26 |
V2–Fe (Fe in the V1 or V2 site) | −0.22 |
V2–Cr (Cr in the V1 or V2 site) | −0.31 |
V2–Nb (Nb in the V1 or V2 site) | −0.37 |
V3–Sn (Sn in the V’1 site) | −0.40 |
V3–Fe (Fe in the V’1 site) | −0.34 |
V3–Cr (Cr in the V’1 site) | −0.45 |
V3–Nb (Nb in the V’1 site) | −0.56 |
V3–Sn (Sn in the V’2 or V’3 site) | −0.44 |
V3–Fe (Fe in the V’2 or V’3 site) | −0.39 |
V3–Cr (Cr in the V’2 or V’3 site) | −0.48 |
V3–Nb (Nb in the V’2 site or V’3 site) | −0.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, R.; Tang, A.; Qin, J.; Xin, T.; Wu, X.; Wen, B.; Wu, L. Trapping Capability of Small Vacancy Clusters in the α-Zr Doped with Alloying Elements: A First-Principles Study. Crystals 2022, 12, 997. https://doi.org/10.3390/cryst12070997
Pan R, Tang A, Qin J, Xin T, Wu X, Wen B, Wu L. Trapping Capability of Small Vacancy Clusters in the α-Zr Doped with Alloying Elements: A First-Principles Study. Crystals. 2022; 12(7):997. https://doi.org/10.3390/cryst12070997
Chicago/Turabian StylePan, Rongjian, Aitao Tang, Jiantao Qin, Tianyuan Xin, Xiaoyong Wu, Bang Wen, and Lu Wu. 2022. "Trapping Capability of Small Vacancy Clusters in the α-Zr Doped with Alloying Elements: A First-Principles Study" Crystals 12, no. 7: 997. https://doi.org/10.3390/cryst12070997
APA StylePan, R., Tang, A., Qin, J., Xin, T., Wu, X., Wen, B., & Wu, L. (2022). Trapping Capability of Small Vacancy Clusters in the α-Zr Doped with Alloying Elements: A First-Principles Study. Crystals, 12(7), 997. https://doi.org/10.3390/cryst12070997