Compositional Glass: A State with Inherent Chemical Disorder, Exemplified by Ti-rich Ni3(Al,Ti)1 D024 Phase
Abstract
:1. Introduction
2. Methods and Materials
2.1. Theory
2.2. Computations
2.3. Experimental Sample Preparation and Characterization
3. Results
3.1. Relevant Phases
3.2. Ground-State Candidates
3.3. Relative Energies of Disordered Structures
3.4. Energies of Fully Ordered Structures and the Ground-State Hull
3.5. Magnetism
3.6. Electronic Structure
3.7. Comparison to the Previous Experiments
3.8. Experiment
3.8.1. X-ray Diffraction
3.8.2. Scanning Electron Microscopy
4. Discussion
5. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reed, R.C. The Superalloys: Fundamentals and Applications; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Thornton, P.H.; Davies, R.G.; Johnston, T.L. The temperature dependence of the flow stress of the γ′ phase based upon Ni3Al. Metall. Trans. 1970, 1, 207–218. [Google Scholar] [CrossRef]
- Garosshen, T.J.; Tillman, T.D.; McCarthy, G.P. Effects of B, C, and Zr on the structure and properties of a P/M nickel base superalloy. Metall. Trans. A 1987, 18, 69–77. [Google Scholar] [CrossRef]
- Argon, A. Strengthening Mechanisms in Crystal Plasticity; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Gaag, T.; Ritter, N.; Peters, A.; Volz, N.; Gruber, D.; Neumeier, S.; Zenk, C.; Körner, C. Improving the Effectiveness of the Solid-Solution-Strengthening Elements Mo, Re, Ru and W in Single-Crystalline Nickel-Based Superalloys. Metals 2021, 11, 1707. [Google Scholar] [CrossRef]
- Jena, A.K.; Chaturvedi, M.C. The role of alloying elements in the design of nickel-base superalloys. J. Mater. Sci. 1984, 19, 3121–3139. [Google Scholar] [CrossRef]
- Smith, T.M.; Zarkevich, N.A.; Egan, A.J.; Stuckner, J.; Gabb, T.P.; Lawson, J.W.; Mills, M.J. Utilizing local phase transformation strengthening for nickel-base superalloys. Commun. Mater. 2021, 2, 106. [Google Scholar] [CrossRef]
- Smith, T.; Esser, B.; Antolin, N.; Viswanathan, G.; Hanlon, T.; Wessman, A.; Mourer, D.; Windl, W.; McComb, D.; Mills, M. Segregation and η phase formation along stacking faults during creep at intermediate temperatures in a Ni-based superalloy. Acta Mater. 2015, 100, 19–31. [Google Scholar] [CrossRef]
- Smith, T.M.; Esser, B.D.; Antolin, N.; Carlsson, A.; Williams, R.E.A.; Wessman, A.; Hanlon, T.; Fraser, H.L.; Windl, W.; McComb, D.W.; et al. Phase transformation strengthening of high-temperature superalloys. Nat. Commun. 2016, 7, 13434. [Google Scholar] [CrossRef] [Green Version]
- Smith, T.M.; Thompson, A.C.; Gabb, T.P.; Bowman, C.L.; Kantzos, C.A. Efficient production of a high-performance dispersion strengthened, multi-principal element alloy. Sci. Rep. 2020, 10, 9663. [Google Scholar] [CrossRef]
- Lilensten, L.; Antonov, S.; Gault, B.; Tin, S.; Kontis, P. Enhanced creep performance in a polycrystalline superalloy driven by atomic-scale phase transformation along planar faults. Acta Mater. 2021, 202, 232–242. [Google Scholar] [CrossRef]
- Zarkevich, N.A.; Johnson, D.D. Between Harmonic Crystal and Glass: Solids with Dimpled Potential-Energy Surfaces Having Multiple Local Energy Minima. Crystals 2022, 12, 84. [Google Scholar] [CrossRef]
- Ising, E. Beitrag zur Theorie des Ferromagnetismus. Z. Für Phys. 1925, 31, 253–258. [Google Scholar] [CrossRef]
- Sanchez, J.M.; de Fontaine, D. The fee Ising model in the cluster variation approximation. Phys. Rev. B 1978, 17, 2926–2936. [Google Scholar] [CrossRef]
- Kikuchi, R.A. Theory of Cooperative Phenomena. Phys. Rev. 1951, 81, 988–1003. [Google Scholar] [CrossRef]
- Sanchez, J.M.; Ducastelle, F.; Gratias, D. Generalized cluster description of multicomponent systems. Phys. A Stat. Mech. Its Appl. 1984, 128, 334–350. [Google Scholar] [CrossRef]
- Mydosh, J.A. Spin Glasses: An Experimental Introduction, 1st ed.; CRC Press: London, UK, 1993. [Google Scholar] [CrossRef]
- Zarkevich, N.A. Theoretical and computational methods for accelerated materials discovery. Mod. Phys. Lett. B 2021, 35, 2130003. [Google Scholar] [CrossRef]
- Korringa, J. On the calculation of the energy of a Bloch wave in a metal. Physica 1947, 13, 392–400. [Google Scholar] [CrossRef]
- Kohn, W.; Rostoker, N. Solution of the Schrödinger Equation in Periodic Lattices with an Application to Metallic Lithium. Phys. Rev. 1954, 94, 1111–1120. [Google Scholar] [CrossRef]
- Johnson, D.D.; Smirnov, A.V.; Khan, S.N. MECCA: Multiple-Scattering Electronic-Structure Calculations for Complex Alloys. KKR-CPA Program; Iowa State University and Ames Laboratory: Ames, IA, USA, 2015. [Google Scholar]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal--amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Ruzsinszky, A.; Csonka, G.I.; Vydrov, O.A.; Scuseria, G.E.; Constantin, L.A.; Zhou, X.; Burke, K. Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Phys. Rev. Lett. 2008, 100, 136406. [Google Scholar] [CrossRef] [Green Version]
- Johnson, D.D.; Nicholson, D.M.; Pinski, F.J.; Gyorffy, B.L.; Stocks, G.M. Density-Functional Theory for Random Alloys: Total Energy within the Coherent-Potential Approximation. Phys. Rev. Lett. 1986, 56, 2088–2091. [Google Scholar] [CrossRef]
- Alam, A.; Johnson, D.D. Optimal site-centered electronic structure basis set from a displaced-center expansion: Improved results via a priori estimates of saddle points in the density. Phys. Rev. B 2009, 80, 125123. [Google Scholar] [CrossRef]
- Christensen, N.E.; Satpathy, S. Pressure-Induced Cubic to Tetragonal Transition in CsI. Phys. Rev. Lett. 1985, 55, 600–603. [Google Scholar] [CrossRef]
- Murnaghan, F.D. The Compressibility of Media under Extreme Pressures. Proc. Natl. Acad. Sci. USA 1944, 30, 244–247. [Google Scholar] [CrossRef] [Green Version]
- Zarkevich, N.A.; Johnson, D.D. Reliable First-Principles Alloy Thermodynamics via Truncated Cluster Expansions. Phys. Rev. Lett. 2004, 92, 255702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- ImageJ: Java Image Processing and Analysis Program v. 1.53. Available online: https://imagej.nih.gov/ij/ (accessed on 7 July 2022).
- Singh, P.; Smirnov, A.V.; Johnson, D.D. Atomic short-range order and incipient long-range order in high-entropy alloys. Phys. Rev. B 2015, 91, 224204. [Google Scholar] [CrossRef] [Green Version]
- Zarkevich, N.A.; Tan, T.L.; Johnson, D.D. Thermodynamic Tool Kit (TTK), 2021st ed.; University of Illinois at Urbana-Champaign: Urbana, IL, USA, 2005. [Google Scholar]
- Zarkevich, N.A. Structural database for reducing cost in materials design and complexity of multiscale computations. Complexity 2006, 11, 36–42. [Google Scholar] [CrossRef]
- Zarkevich, N.A.; Tan, T.L.; Wang, L.L.; Johnson, D.D. Low-energy antiphase boundaries, degenerate superstructures, and phase stability in frustrated fcc Ising model and Ag-Au alloys. Phys. Rev. B 2008, 77, 144208. [Google Scholar] [CrossRef] [Green Version]
- Vonsovsky, S.V. Magnetism; Wiley: New York, NY, USA, 1974. [Google Scholar]
- Schuster, J.C. Critical data evaluation of the aluminium–nickel–titanium system. Intermetallics 2006, 14, 1304–1311. [Google Scholar] [CrossRef]
- Wierzba, B. Phase competition in ternary Ti–Ni–Al system. Phys. A Stat. Mech. Its Appl. 2016, 454, 110–116. [Google Scholar] [CrossRef]
- Ding, J.J.; Rogl, P.; Schmidt, H. Phase relations in the Al-rich corner of the Ti–Ni–Al system. J. Alloy. Compd. 2001, 317–318, 379–384. [Google Scholar] [CrossRef]
- Zeng, K.; Schmid-Fetzer, R.; Huneau, B.; Rogl, P.; Bauer, J. The ternary system Al–Ni–Ti Part II: Thermodynamic assessment and experimental investigation of polythermal phase equilibria. Intermetallics 1999, 7, 1347–1359. [Google Scholar] [CrossRef] [Green Version]
- Budberg, P. Ternary Alloys; Petzow, G., Effenberg, G., Eds.; MSI Materials Science International Services GmbH: Stuttgart, Germany, 1993; Volume 8, pp. 7–21. [Google Scholar]
- Povarova, K.B.; Antonova, A.V.; Burmistrov, V.I.; Chukanov, A.P. Ternary Al-Ti(Ni, Ru)-Me phase diagrams as a basis for designing aluminide-based layered composites with a ductile constituent. Russ. Metall. (Met.) 2005, 3, 75, Translated from: Izv. Ross. Akad. Nauk, Ser. Met., 2005, 3, 75–82.. [Google Scholar]
- Lee, K.J.; Nash, P. The Al-Ni-Ti system (Aluminum-Nickel-Titanium). J. Phase Equilibria 1991, 12, 551–562. [Google Scholar] [CrossRef]
- Raman, A.; Schubert, K. Über den Aufbau einiger zu TiAl3 verwandter Legierungsreihen: III. Untersuchungen in einigen T-Ni-Al- und T-Cu-Al-Systemen. Int. J. Mater. Res. 1965, 56, 99–104. [Google Scholar] [CrossRef]
- Ducastelle, F. Order and Phase Stability in Alloys. Interatomic Potential and Structural Stability; Terakura, K., Akai, H., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; pp. 133–142. [Google Scholar]
- Zarkevich, N.A.; Johnson, D.D. Nudged-elastic band method with two climbing images: Finding transition states in complex energy landscapes. J. Chem. Phys. 2015, 142, 024106. [Google Scholar] [CrossRef] [Green Version]
- Arrhenius, S. Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte. Z. Phys. Chem. 1889, 4, 96–116. [Google Scholar] [CrossRef] [Green Version]
Temperature | xmax(L12) | xmin(D024) | Year | Ref. | |
---|---|---|---|---|---|
Order | 0 K | 50 | 87.5 | This | Theory |
Disorder | ∞ | ≈80 | 91.5 | This | Theory |
RT | 300 K | ≤91.68 | This | Expt. | |
900 °C | 1173 K | 70 | 82 | 2016 | [39] |
900 °C | 1173 K | 67 | 83 | 2001 | [40] |
800 °C | 1073 K | 73 | 88 | 1999 | [41] |
1200 °C | 1473 K | 65 | 83 | 1999 | [41] |
850 °C | 1123 K | 64 | 96 | 1993 | [42] |
1250 °C | 1523 K | 62 | 90 | 1993 | [42] |
800 °C | 1073 K | 67 | 100 | 2005 | [43] |
800 °C | 1073 K | 63 | 100 | 1991 | [44] |
800 °C | 1073 K | 47 | 95 | 1965 | [45] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarkevich, N.A.; Smith, T.M.; Baum, E.N.; Lawson, J.W. Compositional Glass: A State with Inherent Chemical Disorder, Exemplified by Ti-rich Ni3(Al,Ti)1 D024 Phase. Crystals 2022, 12, 1049. https://doi.org/10.3390/cryst12081049
Zarkevich NA, Smith TM, Baum EN, Lawson JW. Compositional Glass: A State with Inherent Chemical Disorder, Exemplified by Ti-rich Ni3(Al,Ti)1 D024 Phase. Crystals. 2022; 12(8):1049. https://doi.org/10.3390/cryst12081049
Chicago/Turabian StyleZarkevich, Nikolai A., Timothy M. Smith, Eli N. Baum, and John W. Lawson. 2022. "Compositional Glass: A State with Inherent Chemical Disorder, Exemplified by Ti-rich Ni3(Al,Ti)1 D024 Phase" Crystals 12, no. 8: 1049. https://doi.org/10.3390/cryst12081049
APA StyleZarkevich, N. A., Smith, T. M., Baum, E. N., & Lawson, J. W. (2022). Compositional Glass: A State with Inherent Chemical Disorder, Exemplified by Ti-rich Ni3(Al,Ti)1 D024 Phase. Crystals, 12(8), 1049. https://doi.org/10.3390/cryst12081049