Synthesis of Two Novel Copper (II) Complexes as Potential Inhibitors of HIV-1 Protease Enzyme: Experimental and Theoretical Investigations
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Instruments
2.2. General Procedure for the Synthesis of C-1 and C-2
2.2.1. Synthesis of [(2,2′-Bipyridine-K2N,N′) (1-formyl-2-Naphtholato-K2O,O′) (Thiocyanate-KN)-Copper (II)] (C-1)
2.2.2. Synthesis of [(1-Formyl-2-naphtholato-K2O,O′) (1,10-Phenanthroline-K2N,N′) Chloride Copper] (C-2)
2.3. X-ray Diffraction
2.4. Computational Methodology
3. Results and Discussions
3.1. Crystal Structure of C-1 [Cu (C11H7O2) (SCN) (C10H8N2)]
3.2. Crystal Structure of C-2 [Cu(C11H7O2) (C12H8N2) Cl]·H2O
3.3. FT–IR and UV-Visible Absorption Spectra
3.4. Hirshfeld Surface Analysis
3.5. Inhibitory Activity of the C-1 and C-2 Complexes against the HIV-1 Protease Enzyme
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Janzen, D.E.; Wang, X.; Carr, P.W.; Mann, K.R. Synthesis and characterization of three geometric isomers of ruthe-niumII(2,2′-bipyridyl) (salicylaldehyde) 2. Inorg. Chim. Acta 2004, 357, 3317–3324. [Google Scholar] [CrossRef]
- Vigato, P.A.; Tamburini, S. The challenge of cyclic and acyclic schiff bases and related derivatives. Coord. Chem. Rev. 2004, 248, 1717–2128. [Google Scholar] [CrossRef]
- Yamada, S. Advancement in stereochemical aspects of Schiff base metal complexes. Coord. Chem. Rev. 1999, 190, 537–555. [Google Scholar] [CrossRef]
- Jayamani, A.; Bellam, R.; Gopu, G.; Ojwach, S.O.; Sengottuvelan, N. Copper(II) complexes of bidentate mixed ligands as artificial nucleases: Synthesis, crystal structure, characterization and evaluation of biological properties. Polyhedron 2018, 156, 138–149. [Google Scholar] [CrossRef]
- Elmali, A.; Elerman, Y. Crystal structure of (2,2′-Dipyridyl)-(2-hydroxynaphthaldehydato) copper (II) perchlorate. Anal. Sci. 2002, 18, 855–856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seco, J.M.; Gonzalez Garmendia, M.J.; Quiros, M. Synthesis characterization of tris (2,2′-bipyridine) and tris (1,10-phenanthroline) copper (II) hexafluorophosphate. Crystal structure of the phenanthroline complex. J. Coord. Chem. 2002, 55, 345–351. [Google Scholar] [CrossRef]
- Adelaide, O.M.; Abidemi, O.O.; Olubunmi, A.D. Synthesis, characterization and antibacterial studies of some copper (II) complexes of 2,2’-bipyridine and 1.10-phenanthroline. J. Chem. Pharm. Res. 2013, 5, 69–73. [Google Scholar]
- Agwaral, M.O.; Ndifon, P.T.; Ndosiril, N.B.; Paboudam, A.G.; Yufanyi, D.M.; Mohamadou, A. Synthesis, Characterisa-tion and Antimicrobial activities of Cobalt (II), Copper (II) and Zinc (II) mixed-ligand complexes containing 1,10 Phe-nanthroline and 2,2-Bipyridine. Bull. Chem. Soc. Ethiop. 2010, 24, 383–389. [Google Scholar]
- Lobana, T.S.; Indoria, S.; Jassal, A.K.; Kaur, H.; Arora, D.S.; Jasinski, J.P. Synthesis, structures, spectroscopy and anti-microbial properties of complexes of Copper(II) with salicylaldehyde N-substituted thiosemicarbazones and 2,20-bipyridine or 1,10-phenanthroline. Eur. J. Med. Chem. 2014, 76, 145–154. [Google Scholar] [CrossRef]
- Sierra-Aragón, S.; Walter, H. Targets for Inhibition of HIV Replication: Entry, Enzyme Action, Release and Maturation. Intervirology 2012, 55, 84–97. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.K.; Osswald, H.L.; Prato, G. Recent Progress in the Development of HIV-1 Protease Inhibitors for the Treatment of HIV/AIDS. J. Med. Chem. 2016, 59, 5172–5208. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Lv, Z.; Chu, Y. HIV protease inhibitors: A review of molecular selectivity and toxicity. HIV/AIDS-Res. Palliat. Care 2015, 7, 95–104. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colic-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785. [Google Scholar] [CrossRef] [Green Version]
- Becke, A.D. Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. J. Chem. Phys. 1992, 96, 2155–2160. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Becke, A.D. A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 1993, 98, 1372–1377. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comp. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Lebon, F.; Ledecq, M.; Benatallah, Z.; Sicsic, S.; Lapouyade, R.; Kahn, O.; Garçon, A.; Reboud-Ravaux, M.; Durant, F. Synthesis and structural analysis of copper(II) pyridine amide complexes as HIV-1 protease inhibitors. J. Chem. Soc. Perkin Trans. 1999, 2, 795–800. [Google Scholar] [CrossRef]
- Mager, P.P. The active site of HIV-1 protease. Med. Res. Rev. 2001, 21, 348–353. [Google Scholar] [CrossRef]
- Mudgal, M.M.; Birudukota, N.; Doke, M.A. Applications of Click Chemistry in the Development of HIV Protease Inhib-itors. Inter. J. Med. Chem. 2018, 2018, 2946730. [Google Scholar]
- Bruker. APEX2 and SAINT; Bruker AXS Inc.: Madison, WI, USA, 2011. [Google Scholar]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sect. A 2008, A64, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Men-nucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision B.01; Gaussian, Inc.: Wallingford, CT, USA, 2010. [Google Scholar]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open babel: An open chemical toolbox. J. Cheminform. 2011, 3, 33. [Google Scholar] [CrossRef] [Green Version]
- The Open Babel Package, Version 2.3.1. Available online: http://openbabel.org (accessed on 30 March 2022).
- Addison, A.W.; Rao, T.N.; Reedijk, J.; van Rijn, J.; Verschoor, G.C. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aq-ua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) pe. J. Chem. Soc. Dalt. Trans. 1984, 7, 1349–1356. [Google Scholar] [CrossRef]
- Asgharpour, Z.; Farzaneh, F.; Abbasi, A. Synthesis, characterization and immobilization of a new cobalt(ii) complex on modified magnetic nanoparticles as catalyst for epoxidation of alkenes and oxidation of activated alkanes. RSC Adv. 2016, 6, 95729–95739. [Google Scholar] [CrossRef]
- Bernstein, J.; Davis, R.E.; Shimoni, L.; Chang, N.-L. Patterns in Hydrogen Bonding: Functionality and Graph Set Analysis in Crystals. Angew. Chem. Int. Ed. Engl. 1995, 34, 1555–1573. [Google Scholar] [CrossRef]
- Etter, M.C.; Macdonald, J.C.; Bernstein, J. Graph-set analysis of hydrogen-bond patterns in organic crystals. Acta Crystallogr. Sect. B Struct. Sci. 1990, 46, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Hangan, A.; Bodoki, A.; Oprean, L.; Alzuet, G.; Liu-Gonzalez, M.; Borras, J. Synthesis, crystallographic, spectroscopic characterization and magnetic properties of dimer and monomer ternary copper(II) complexes with sulfonamide deriv-atives and 1,10-phenantroline. Nuclease activity by the oxidative mechanism. Polyhedron 2010, 29, 1305–1313. [Google Scholar] [CrossRef]
- Lara, J.G.; Sanchez, A.A. The infra-red spectra of 2-hydroxy-l-naphthaldehyde complexes. Spectrochim. Acta Part A 1967, 23, 1299–1306. [Google Scholar] [CrossRef]
- Mohapatra, R.K.; Saikishore, V.P.; Azam, M.; Biswal, S.K. Synthesis and physicochemical studies of a series of mixed-ligand transition metal complexes and their molecular docking investigations against Coronavirus main protease. Open Chem. 2020, 18, 1495–1506. [Google Scholar] [CrossRef]
- Spackman, M.A.; Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 2009, 11, 19–32. [Google Scholar] [CrossRef]
- Spackman, M.A.; McKinnon, J.J. Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm 2002, 4, 378–392. [Google Scholar] [CrossRef]
- Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. Crystal Ex-Plorer17.5; The University of Western Australia: Perth, Australia, 2017. [Google Scholar]
Complex | C-1 | C-2 |
---|---|---|
Empirical formula | CuC22H15N3O2S | CuC23H17N2O3Cl |
Formula weight | 448.97 | 468.39 |
Crystal size (mm) | 0.2 × 0.1 × 0.01 | 0.2 × 0.1 × 0.01 |
Temperature (K) | 273 | 296 |
Crystal system | Monoclinic | Triclinic |
Space group | P21/n | P-1 |
a (Å) | 9.5832(4) | 8.5321(8) |
b (Å) | 12.4567(5) | 9.5749(9) |
c (Å) | 16.2129(6) | 13.6821(14) |
α (°) | 90 | 93.512(5) |
β (°) | 102.715(2) | 106.802(4) |
γ (°) | 90 | 113.281(4) |
V (Å3) | 1887.95(13) | 963.13(17) |
Z | 4 | 2 |
Dx (g cm−3) | 1.580 | 1.615 |
Abs. coefficient (mm−1) | 1.29 | 1.30 |
Transmission factors (min, max) | 0.851, 0.987 | 0.851, 0.987 |
θ Range (°) | 4.4 to 27.1 | 4.5 to 39.4 |
Reflections measured | 19,345 | 27,567 |
Independent reflections; Rint | 0.068 | 0.0147 |
Reflections with I > 2σ(I) | 3341 | 5844 |
Number of parameters | 262 | 271 |
R(F) [I > 2σ(I)] | 0.040 | 0.025 |
wR(F2) (all data) | 0.1048 | 0.0681 |
Goodness-of-fit on F2 | 1.070 | 1.044 |
Δρmax, Δρmin (e Å−3) | 1.32, −0.77 | 0.53, −0.29 |
C-1 complex | ||||
D-H···A | D-H | H···A | D···A | D-H···A |
C11- H7···S1 i | 0.93 | 2.84 | 3.729 (3) | 161 |
C20- H14···S1 ii | 0.93 | 2.97 | 3.621 (3) | 128 |
C12- H8···O1 | 0.93 | 2.46 | 2.951(3) | 113 |
C21-H15···O2 | 0.93 | 2.50 | 3.002 (3) | 114 |
C-2 complex | ||||
D-H···A | D-H | H···A | D···A | D-H···A |
O3-H (3A)···Cl1 | 0.85 | 2.73 | 3.206 (14) | 169 |
O3-H (3B)···Cl1 III | 0.85 | 2.40 | 3.246 (13) | 178 |
C3-H3···O3 II | 0.93 | 2.54 | 3.436 (19) | 162 |
C4-H4···O3 V | 0.93 | 2.32 | 3.243 (2) | 174 |
C5-H5···O2 | 0.93 | 2.54 | 3.003 (16) | 111 |
C6-H6···Cl1 II | 0.93 | 2.82 | 3.657 (15) | 151 |
C12-H12···Cl1 IV | 0.93 | 2.77 | 3.475 (18) | 133 |
C19-H19···Cl1 I | 0.93 | 2.82 | 3.597 (15) | 142 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamlaoui, M.; Hamlaoui, I.; Damous, M.; Belhocine, Y.; Sbei, N.; Ali, F.A.M.; Alghamdi, M.A.; Talab, S.; Rahali, S.; Merazig, H. Synthesis of Two Novel Copper (II) Complexes as Potential Inhibitors of HIV-1 Protease Enzyme: Experimental and Theoretical Investigations. Crystals 2022, 12, 1066. https://doi.org/10.3390/cryst12081066
Hamlaoui M, Hamlaoui I, Damous M, Belhocine Y, Sbei N, Ali FAM, Alghamdi MA, Talab S, Rahali S, Merazig H. Synthesis of Two Novel Copper (II) Complexes as Potential Inhibitors of HIV-1 Protease Enzyme: Experimental and Theoretical Investigations. Crystals. 2022; 12(8):1066. https://doi.org/10.3390/cryst12081066
Chicago/Turabian StyleHamlaoui, Meriem, Ikram Hamlaoui, Maamar Damous, Youghourta Belhocine, Najoua Sbei, Fatima Adam Mohamed Ali, Mashael A. Alghamdi, Sarra Talab, Seyfeddine Rahali, and Hocine Merazig. 2022. "Synthesis of Two Novel Copper (II) Complexes as Potential Inhibitors of HIV-1 Protease Enzyme: Experimental and Theoretical Investigations" Crystals 12, no. 8: 1066. https://doi.org/10.3390/cryst12081066
APA StyleHamlaoui, M., Hamlaoui, I., Damous, M., Belhocine, Y., Sbei, N., Ali, F. A. M., Alghamdi, M. A., Talab, S., Rahali, S., & Merazig, H. (2022). Synthesis of Two Novel Copper (II) Complexes as Potential Inhibitors of HIV-1 Protease Enzyme: Experimental and Theoretical Investigations. Crystals, 12(8), 1066. https://doi.org/10.3390/cryst12081066