First-Principles Calculations of the Structural, Electronic, Optical, and Mechanical Properties of 21 Pyrophosphate Crystals
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Electronic Structure
3.2. Interatomic Bonding
3.3. Partial Charge
3.4. Optical Properties
3.5. Spin-Polarized Calculations
3.6. Mechanical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fang, W.; An, Z.; Xu, J.; Zhao, H.; Zhang, J. Superior performance of Na7V4(P2O7)4PO4 in sodium ion batteries. RSC Adv. 2018, 8, 21224–21228. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Zhao, S.; Zhao, B.; Ji, C.; Li, L.; Sun, Z.; Hong, M.; Luo, J. Strong Nonlinear-Optical Response in the Pyrophosphate CsLiCdP2O7 with a Short Cutoff Edge. Inorg. Chem. 2016, 55, 11626–11629. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Young, J.; Wu, H.; Zhang, W.; Rondinelli, J.M.; Halasyamani, P.S. M4Mg4(P2O7)3 (M = K, Rb): Structural Engineering of Pyrophosphates for Nonlinear Optical Applications. Chem. Mater. 2017, 29, 1845–1855. [Google Scholar] [CrossRef]
- Yu, H.; Cantwell, J.; Wu, H.; Zhang, W.; Poeppelmeier, K.R.; Halasyamani, P.S. Top-Seeded Solution Crystal Growth, Morphology, Optical and Thermal Properties of Ba3(ZnB5O10)PO4. Cryst. Growth Des. 2016, 16, 3976–3982. [Google Scholar] [CrossRef]
- Wu, C.; Li, L.; Yang, G.; Song, J.; Yan, B.; Humphrey, M.G.; Zhang, L.; Shao, J.; Zhang, C. Low-temperature-flux syntheses of ultraviolet-transparent borophosphates Na4MB2P3O13(M = Rb, Cs) exhibiting a second-harmonic generation response. Dalton Trans. 2017, 46, 12605–12611. [Google Scholar] [CrossRef]
- Jiang, J.-H.; Zhang, L.-C.; Huang, Y.-X.; Sun, Z.-M.; Pan, Y.; Mi, J.-X. KB(PO4)F: A novel acentric deep-ultraviolet material. Dalton Trans. 2017, 46, 1677–1683. [Google Scholar] [CrossRef]
- Zhou, Y.; Cao, L.; Lin, C.; Luo, M.; Yan, T.; Ye, N.; Cheng, W. AMgPO4·6H2O (A = Rb, Cs): Strong SHG responses originated from orderly PO4 groups. J. Mater. Chem. C 2016, 4, 9219–9226. [Google Scholar] [CrossRef]
- Li, L.; Wang, Y.; Lei, B.-H.; Han, S.; Yang, Z.; Poeppelmeier, K.R.; Pan, S. A New Deep-Ultraviolet Transparent Orthophosphate LiCs2PO4 with Large Second Harmonic Generation Response. J. Am. Chem. Soc. 2016, 138, 9101–9104. [Google Scholar] [CrossRef]
- Zhang, X.; Mo, F.; Zhou, L.; Gong, M. Properties-structure relationship research on LiCaPO4: Eu2+ as blue phosphor for NUV LED application. J. Alloy. Compd. 2013, 575, 314–318. [Google Scholar] [CrossRef]
- Dong, W.; Sun, Y.; Yao, Q.; Wang, Q.; Wen, H.; Li, J.; Xu, X.; Wang, J. Te3O3(PO4)2: A phosphate crystal with large birefringence activated by the highly distorted [TeO5] group and antiparallel [PO4] pseudo-layer. J. Mater. Chem. C 2020, 8, 9585–9592. [Google Scholar] [CrossRef]
- Liu, Q.; Liao, Z.; Axinte, D. Temperature effect on the material removal mechanism of soft-brittle crystals at nano/micron scale. Int. J. Mach. Tools Manuf. 2020, 159, 103620. [Google Scholar] [CrossRef]
- Cheng, J.; Xiao, Y.; Liu, Q.; Yang, H.; Zhao, L.; Chen, M.; Tan, J.; Liao, W.; Chen, J.; Yuan, X. Effect of surface scallop tool marks generated in micro-milling repairing process on the optical performance of potassium dihydrogen phosphate crystal. Mater. Des. 2018, 157, 447–456. [Google Scholar] [CrossRef]
- Essehli, R.; Sabri, S.; El-Mellouhi, F.; Aïssa, B.; Ben Yahia, H.; Altamash, T.; Khraisheh, M.; Amhamed, A.; El Bali, B. Single crystal structure, vibrational spectroscopy, gas sorption and antimicrobial properties of a new inorganic acidic diphosphates material (NH4)2Mg(H2P2O7)2 2H2O. Sci. Rep. 2020, 10, 8909. [Google Scholar] [CrossRef]
- Walker, J.E. ATP Synthesis by Rotary Catalysis (Nobel lecture). Angew. Chem. Int. Ed. Engl. 1998, 37, 2308–2319. [Google Scholar] [CrossRef]
- Boyer, P.D. The recognition of binding changes of catalytic sites of the ATP synthase…… was followed by the postulate of a rotational catalysis that has now been Energy, Life, and ATP (Nobel Lecture). Angew. Chem. Int. Ed. 1998, 37, 2296–2307. [Google Scholar] [CrossRef]
- Ben Saad, A.; Ratel-Ramond, N.; Rzaigui, M.; Akriche, S. A New Photoluminescent Co(II)-Diphosphate Cluster Templated by Fampridine Cation: Synthesis and Biophysicochemical Evaluation. J. Clust. Sci. 2016, 27, 657–670. [Google Scholar] [CrossRef]
- Jouini, A.; Gâcon, J.; Ferid, M.; Trabelsi-Ayadi, M. Luminescence and scintillation properties of praseodymium poly and diphosphates. Opt. Mater. 2003, 24, 175–180. [Google Scholar] [CrossRef]
- Essehli, R.; El Bali, B.; Lachkar, M.; Cruciani, G. Two new acidic diphosphates Rb2M(H2P2O7)2·2H2O (M = Zn and Mg): Crystal structures and vibrational study. J. Alloy. Compd. 2010, 492, 358–362. [Google Scholar] [CrossRef]
- Boonchom, B.; Youngme, S.; Danvirutai, C. A rapid co-precipitation and non-isothermal decomposition kinetics of new binary Mn0.5Co0.5(H2PO4)2·2H2O. Solid State Sci. 2008, 10, 129–136. [Google Scholar] [CrossRef]
- Uebou, Y.; Okada, S.; Egashira, M.; Yamaki, J.-I. Cathode properties of pyrophosphates for rechargeable lithium batteries. Solid State Ion. 2002, 148, 323–328. [Google Scholar] [CrossRef]
- Kitsugi, T. Transmission electron microscopy observations at the interface of bone and four types of calcium phosphate ceramics with different calcium/phosphorus molar ratios. Biomaterials 1995, 16, 1101–1107. [Google Scholar] [CrossRef]
- Cheetham, A.K.; Férey, G.; Loiseau, T. Open-framework inorganic materials. Angew. Chem. Int. Ed. 1999, 38, 3268–3292. [Google Scholar] [CrossRef]
- Popescu, I.; Wu, Y.; Granger, P.; Marcu, I.-C. An in situ electrical conductivity study of LaCoFe perovskite-based catalysts in correlation with the total oxidation of methane. Appl. Catal. A Gen. 2014, 485, 20–27. [Google Scholar] [CrossRef]
- Essehli, R.; El Bali, B.; Tahiri, A.A.; Lachkar, M.; Manoun, B.; Dušek, M.; Fejfarová, K. K2M (H2P2O7)2 2H2O (M = Ni, Cu, Zn): Orthorhombic forms and Raman spectra. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 2005, 61, i120–i124. [Google Scholar] [CrossRef]
- Capitelli, F.; Ii, R.K.; Ii, M.H.; Ii, A.E.; Hmad, S.; Ii, H. Crystal structure and vibrational spectroscopy of the new acidic diphosphate(NH4)2Zn(H2P2O7)2·2H2O. Z. Kristallogr. 2005, 220, 25–30. [Google Scholar] [CrossRef]
- Essehli, R.; Lachkar, M.; Svoboda, I.; Fuess, H.; El Bali, B. (NH4)2[Ni(H2P2O7)2(H2O)2]. Acta Crystallogr. Sect. E Struct. Rep. Online 2005, 61, i64–i66. [Google Scholar] [CrossRef]
- Capitelli, F.; Brouzi, K.; Harcharras, M.; Ennaciri, A.; Moliterni, A.G.G.; Bertolasi, V. Two new ammonium diphosphates: Crystal structure. Z. Für Krist.-Cryst. Mater. 2004, 219, 93–98. [Google Scholar] [CrossRef]
- Essehli, R.; Lachkar, M.; Svoboda, I.; Fuess, H.; El Bali, B. (NH4)2[Co(H2P2O7)2(H2O)2]. Acta Crystallogr. Sect. E Struct. Rep. Online 2005, 61, 61–63. [Google Scholar] [CrossRef]
- Harcharras, M.; Capitelli, F.; Ennaciri, A.; Brouzi, K.; Moliterni, A.; Mattei, G.; Bertolasi, V. Synthesis, X-ray crystal structure and vibrational spectroscopy of the acidic pyrophosphate KMg0.5H2P2O7·H2O. J. Solid State Chem. 2003, 176, 27–32. [Google Scholar] [CrossRef]
- Tahiri, A.A.; Ouarsal, R.; Lachkar, M.; Zavalij, P.Y.; El Bali, B. Dipotassium zinc bis (dihydrogendiphosphate) dihydrate, K2Zn(H2P2O7)2·2H2O. Acta Crystallogr. Sect. E Struct. Rep. Online 2003, 59, i50–i52. [Google Scholar] [CrossRef]
- Khaoulaf, R.; Ennaciri, A.; Ezzaafrani, M.; Capitelli, F. Structure and Vibrational Spectra of a New Acidic Diphosphate K2Cu(H2P2O7)2·2H2O. Phosphorus Sulfur Silicon Relat. Elem. 2013, 188, 1038–1052. [Google Scholar] [CrossRef]
- Tahiri, A.A.; Messouri, I.; Lachkar, M.; Zavalij, P.Y.; Glaum, R.; El Bali, B.; Rachid, O. Dipotassium nickel(II) bis(dihydrogendiphosphate) dihydrate, K2Ni(H2P2O7)2·2H2O. Acta Crystallogr. Sect. E Struct. Rep. Online 2003, 60, 5–7. [Google Scholar] [CrossRef]
- Xu, J.-Y.; Tian, J.-L.; Zhang, Q.-W.; Zhao, J.; Yan, S.-P.; Liao, D.-Z. Tetranuclear pyrophosphate-bridged Cu(II) complex with 2,2′-dipyridylamine: Crystal structure, spectroscopy and magnetism. Inorg. Chem. Commun. 2008, 11, 69–72. [Google Scholar] [CrossRef]
- Edition, S. Geomicrobiology, 6th ed.; CRC Press: Boca Raton, FL, USA.
- Knight, W.B.; Dunaway-Mariano, D.; Ransom, S.C.; Villafranca, J.J. Investigations of the metal ion-binding sites of yeast inorganic pyrophosphatase. J. Biol. Chem. 1984, 259, 2886–2895. [Google Scholar] [CrossRef]
- Haromy, T.P.; Knight, W.B.; Dunaway-Mariano, D.; Sundaralingam, M. Structure of Bidentate Tetraammine (pyrophosphato) chromium (III) Dihydrate. Acta Cryst. 1984, C40, 223–226. [Google Scholar]
- Halonen, P.; Baykov, A.A.; Goldman, A.; Lahti, R.; Cooperman, B.S. Single-turnover kinetics of Saccharomyces cerevisiae inorganic pyrophosphatase. Biochemistry 2002, 41, 12025–12031. [Google Scholar] [CrossRef] [PubMed]
- Datta, A.; Agarwal, M.; Dasgupta, S. Novel vanadium phosphate phases as catalysts for selective oxidation. J. Chem. Sci. 2002, 114, 379–390. [Google Scholar] [CrossRef]
- Chen, B.; Munson, E.J. Investigation of the Mechanism of n-Butane Oxidation on Vanadium Phosphorus Oxide Catalysts: Evidence from Isotopic Labeling Studies. J. Am. Chem. Soc. 2002, 124, 1638–1652. [Google Scholar] [CrossRef]
- Ballarini, N.; Cavani, F.; Cortelli, C.; Ligi, S.; Pierelli, F.; Trifirò, F.; Fumagalli, C.; Mazzoni, G.; Monti, T. VPO catalyst for n-butane oxidation to maleic anhydride: A goal achieved, or a still open challenge? Top. Catal. 2006, 38, 147–156. [Google Scholar] [CrossRef]
- Papa, S. Mitochondrial oxidative phosphorylation changes in the life span. Molecular aspects and physiopathological implications. Biochim. Biophys. Acta-Bioenerg. 1996, 1276, 87–105. [Google Scholar] [CrossRef]
- Lipscomb, W.N.; Sträter, N. Recent Advances in Zinc Enzymology. Chem. Rev. 1996, 96, 2375–2434. [Google Scholar] [CrossRef] [PubMed]
- Kulaev, I.S.; Vagabov, V.M.; Kulakovskaya, T.V. The Biochemistry of Inorganic Polyphosphates, 2nd ed.; Wiley: Hoboken, NJ, USA, 2004. [Google Scholar] [CrossRef]
- Arnstein, H. The biochemistry of the nucleic acids. 10th edition. FEBS Lett. 1987, 219, 486. [Google Scholar] [CrossRef]
- Kajander, T.; Kellosalo, J.; Goldman, A. Inorganic pyrophosphatases: One substrate, three mechanisms. FEBS Lett. 2013, 587, 1863–1869. [Google Scholar] [CrossRef] [PubMed]
- Baykov, A.A.; Cooperman, B.S.; Goldman, A.; Lahti, R. Cytoplasmic Inorganic Pyrophosphatase. Prog. Mol. Subcell. Biol. 1999, 23, 127–150. [Google Scholar] [CrossRef] [PubMed]
- Motta, L.S.; Ramos, I.B.; Gomes, F.M.; de Souza, W.; Champagne, D.E.; Santiago, M.F.; Docampo, R.; Miranda, K.; Machado, E.A. Proton-pyrophosphatase and polyphosphate in acidocalcisome-like vesicles from oocytes and eggs of Periplaneta americana. Insect Biochem. Mol. Biol. 2009, 39, 198–206. [Google Scholar] [CrossRef]
- Wilcox, D.E. Binuclear Metallohydrolases. Chem. Rev. 1996, 96, 2435–2458. [Google Scholar] [CrossRef]
- Shintani, T.; Uchiumi, T.; Yonezawa, T.; Salminen, A.; Baykov, A.A.; Lahti, R.; Hachimori, A. Cloning and expression of a unique inorganic pyrophosphatase from Bacillus subtilis: Evidence for a new family of enzymes. FEBS Lett. 1998, 439, 263–266. [Google Scholar] [CrossRef]
- Kuhn, N.J.; Wadeson, A.; Ward, S.; Young, T.W. Methanococcus jannaschii ORF mj0608 Codes for a Class C Inorganic Pyrophosphatase Protected by Co2+ or Mn2+ Ions against Fluoride Inhibition. Arch. Biochem. Biophys. 2000, 379, 292–298. [Google Scholar] [CrossRef]
- Moreira, B.L.M.; Medeiros, L.C.A.S.; Miranda, K.; De Souza, W.; Hentschel, J.; Plattner, H.; Barrabin, H. Kinetics of pyrophosphate-driven proton uptake by acidocalcisomes of Leptomonas wallacei. Biochem. Biophys. Res. Commun. 2005, 334, 1206–1213. [Google Scholar] [CrossRef]
- Mimura, H.; Nakanishi, Y.; Maeshima, M. Oligomerization of H+-pyrophosphatase and its structural and functional consequences. Biochim. Biophys. Acta-Bioenerg. 2005, 1708, 393–403. [Google Scholar] [CrossRef]
- Westfall, D.; Aboushadi, N.; Shackelford, J.E.; Krisans, S.K. Metabolism of Farnesol: Phosphorylation of Farnesol by Rat Liver Microsomal and Peroxisomal Fractions. Biochem. Biophys. Res. Commun. 1997, 230, 562–568. [Google Scholar] [CrossRef]
- Gdula, D.A.; Sandaltzopoulos, R.; Tsukiyama, T.; Ossipow, V.; Wu, C. Inorganic pyrophosphatase is a component of the Drosophila nucleosome remodeling factor complex. Genes Dev. 1998, 12, 3206–3216. [Google Scholar] [CrossRef] [PubMed]
- Harutyunyan, E.H.; Kuranova, I.P.; Vainshtein, B.K.; Hohne, W.E.; Lamzin, V.; Dauter, Z.; Teplyakov, A.V.; Wilson, K. X-ray Structure of Yeast Inorganic Pyrophosphatase Complexed with Manganese and Phosphate. JBIC J. Biol. Inorg. Chem. 1996, 239, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Gómez-García, M.R.; Losada, M.; Serrano, A. A novel subfamily of monomeric inorganic pyrophosphatases in photosynthetic eukaryotes. Biochem. J. 2006, 395, 211–221. [Google Scholar] [CrossRef]
- Kim, H.; Park, J.; Park, I.; Jin, K.; Jerng, S.E.; Kim, S.H.; Nam, K.T.; Kang, K. Coordination tuning of cobalt phosphates towards efficient water oxidation catalyst. Nat. Commun. 2015, 6, 8253. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cheng, W.; Wu, D.; Zhang, H.; Chen, D.; Gong, Y.; Kan, Z. Crystal and Band Structures, Bonding, and Optical Properties of Solid Compounds of Alkaline Indium (III) Pyrophosphates MInP2O7 (M = Na, K, Rb, Cs). Chem. Mater. 2004, 16, 4150–4159. [Google Scholar] [CrossRef]
- Witko, M.; Tokarz, R.; Haber, J.; Hermann, K. Electronic structure of vanadyl pyrophosphate: Cluster model studies. J. Mol. Catal. A Chem. 2001, 166, 59–72. [Google Scholar] [CrossRef]
- Xiang, H.; Feng, Z.; Zhou, Y. Ab initio computations of electronic, mechanical, lattice dynamical and thermal properties of ZrP2O7. J. Eur. Ceram. Soc. 2014, 34, 1809–1818. [Google Scholar] [CrossRef]
- Elhafiane, F.; Khaoulaf, R.; Harcharras, M.; Brouzi, K. Synthesis, crystal structure, vibrational spectroscopy and electrochemical investigations of a new acidic metal pyrophosphate NiK1.18N0.82(H2P2O7)2.2H2O. J. Mol. Struct. 2021, 1245, 131234. [Google Scholar] [CrossRef]
- Elhafiane, F.Z.; Brouzi, K.; Khaoulaf, R.; Rghioui, L.; Harcharras, M. New acidic pyrophosphate CoK1.078N0.922(H2P2O7)2.2H2O. Crystal structure and vibrational spectroscopy. Phosphorus Sulfur Silicon Relat. Elem. 2019, 195, 173–179. [Google Scholar] [CrossRef]
- Khaoulaf, R.; Ezzaafrani, M.; Ennaciri, A.; Harcharras, M.; Capitelli, F. Vibrational Study of Dipotassium Zinc Bis(Dihydrogendiphosphate) Dihydrate, K2ZN(H2P2O7)2·2H2O. Phosphorus Sulfur Silicon Relat. Elem. 2012, 187, 1367–1376. [Google Scholar] [CrossRef]
- Khaoulaf, R.; Adhikari, P.; Harcharras, M.; Brouzi, K.; Ez-Zahraouy, H.; Ching, W.-Y. Atomic-Scale Understanding of Structure and Properties of Complex Pyrophosphate Crystals by First-Principles Calculations. Appl. Sci. 2019, 9, 840. [Google Scholar] [CrossRef]
- Adhikari, P.; Khaoulaf, R.; Ez-zahraouy, H.; Ching, W. Subject Category: Subject Areas: Complex interplay of interatomic bonding in a K2Mg (H2P2O7)2 2H2O. R. Soc. Open sci. 2017, 4, 170982. [Google Scholar] [CrossRef]
- Lamhamdi, A.; Essehli, R.; El Bali, B.; Dusek, M.; Fejfarov, K. The triclinic form of dipotassium cobalt(II) bis(dihydrogendiphosphate) dihydrate. Acta Crystallogr. Sect. E Struct. Rep. Online 2011, 67, i37–i38. [Google Scholar] [CrossRef]
- El Bali, B.; Capitelli, F.; Alaoui, A.T.; Lachkar, M.; da Silva, I.; Alvarez-Larena, A.; Piniella, J.F. New thallium diphosphates Tl2 Me(H2P2O7)2 2H2O, Me = Mg, Mn, Co, Ni and Zn. Synthesis, single crystal X-ray structures and powder X-ray structure of the Mg phase. Z. Fur Krist. 2008, 223, 448–455. [Google Scholar] [CrossRef]
- Deyab, M.A.; Essehli, R.; El Bali, B.; Lachkar, M. Fabrication and evaluation of Rb2Co(H2P2O7)2·2H2O/waterborne polyurethane nanocomposite coating for corrosion protection aspects. RSC Adv. 2017, 7, 55074–55080. [Google Scholar] [CrossRef]
- Kresse, G. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis se. Phys. Rev. B. 1996, 54, 11169. [Google Scholar] [CrossRef]
- Mo, Y.; Rulis, P.; Ching, W.Y. Electronic structure and optical conductivities of 20 MAX-phase compounds. Phys. Rev. B-Condens. Matter Mater. Phys. 2012, 86, 165122. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillonin-zone integrations. Phys. Rev. B 1976, 13, 5188. [Google Scholar] [CrossRef]
- Hasan, S.; Adhikari, P.; Baral, K.; Ching, W.-Y. Conspicuous interatomic bonding in chalcogenide crystals and implications on electronic, optical, and elastic properties. AIP Adv. 2020, 10, 075216. [Google Scholar] [CrossRef]
- Hasan, S.; Baral, K.; Li, N.; Ching, W.-Y. Structural and physical properties of 99 complex bulk chalcogenides crystals using first-principles calculations. Sci. Rep. 2021, 11, 9921. [Google Scholar] [CrossRef] [PubMed]
- Dharmawardhana, C.; Bakare, M.; Misra, A.; Ching, W. Nature of Interatomic Bonding in Controlling the Mechanical Properties of Calcium Silicate Hydrates. J. Am. Ceram. Soc. 2016, 99, 2120–2130. [Google Scholar] [CrossRef]
- Poudel, L.; Tamerler, C.; Misra, A.; Ching, W.-Y. Atomic-Scale Quantification of Interfacial Binding between Peptides and Inorganic Crystals: The Case of Calcium Carbonate Binding Peptide on Aragonite. J. Phys. Chem. C 2017, 121, 28354–28363. [Google Scholar] [CrossRef]
- San, S.; Li, N.; Tao, Y.; Zhang, W.; Ching, W.-Y. Understanding the atomic and electronic origin of mechanical property in thaumasite and ettringite mineral crystals. J. Am. Ceram. Soc. 2018, 101, 5177–5187. [Google Scholar] [CrossRef]
- Hasan, S.; San, S.; Baral, K.; Li, N.; Rulis, P.; Ching, W.-Y. First-Principles Calculations of Thermoelectric Transport Properties of Quaternary and Ternary Bulk Chalcogenide Crystals. Materials 2022, 15, 2843. [Google Scholar] [CrossRef] [PubMed]
- Hunca, B.; Dharmawardhana, C.; Sakidja, R.; Ching, W.-Y. Ab initio calculations of thermomechanical properties and electronic structure of vitreloy Zr41.2Ti13.8Cu12.5Ni10Be22.5. Phys. Rev. B 2016, 94, 144207. [Google Scholar] [CrossRef]
- Ching, W.; Yoshiya, M.; Adhikari, P.; Rulis, P.; Ikuhara, Y.; Tanaka, I. First-principles study in an inter-granular glassy film model of silicon nitride. J. Am. Ceram. Soc. 2018, 101, 2673–2688. [Google Scholar] [CrossRef]
- Poudel, L.; Twarock, R.; Steinmetz, N.F.; Podgornik, R.; Ching, W.-Y. Impact of Hydrogen Bonding in the Binding Site between Capsid Protein and MS2 Bacteriophage ssRNA. J. Phys. Chem. B 2017, 121, 6321–6330. [Google Scholar] [CrossRef]
- Adhikari, P.; Li, N.; Shin, M.; Steinmetz, N.F.; Twarock, R.; Podgornik, R.; Ching, W.-Y. Intra- and intermolecular atomic-scale interactions in the receptor binding domain of SARS-CoV-2 spike protein: Implication for ACE2 receptor binding. Phys. Chem. Chem. Phys. 2020, 22, 18272–18283. [Google Scholar] [CrossRef]
- Mulliken, R.S. Electronic population analysis on LCAO-MO molecular wave functions. J. Chem. Phys. 1955, 23, 1833–1840. [Google Scholar] [CrossRef]
- Dharmawardhana, C.C.; Misra, A.; Ching, W.-Y. Quantum Mechanical Metric for Internal Cohesion in Cement Crystals. Sci. Rep. 2014, 4, 7332. [Google Scholar] [CrossRef]
- Schulte, J.E.; Goulian, M. The Phosphohistidine Phosphatase SixA Targets a Phosphotransferase System. mBio 2018, 9, e01666-18. [Google Scholar] [CrossRef] [PubMed]
- Hunter, T. A journey from phosphotyrosine to phosphohistidine and beyond. Mol. Cell 2022, 82, 2190–2200. [Google Scholar] [CrossRef] [PubMed]
- Gohla, A. Do metabolic HAD phosphatases moonlight as protein phosphatases? Biochim. Biophys. Acta-Mol. Cell Res. 2018, 1866, 153–166. [Google Scholar] [CrossRef] [PubMed]
- Makwana, M.V.; Muimo, R.; Jackson, R.F. Advances in development of new tools for the study of phosphohistidine. Lab. Investig. 2017, 98, 291–303. [Google Scholar] [CrossRef]
- Hindupur, S.K.; Colombi, M.; Fuhs, S.R.; Matter, M.; Guri, Y.; Adam, K.; Cornu, M.; Piscuoglio, S.; Ng, C.K.Y.; Betz, C.; et al. The protein histidine phosphatase LHPP is a tumour suppressor. Nature 2018, 555, 678–682. [Google Scholar] [CrossRef]
- Schulte, J.E.; Roggiani, M.; Shi, H.; Zhu, J.; Goulian, M. The phosphohistidine phosphatase SixA dephosphorylates the phosphocarrier NPr. J. Biol. Chem. 2021, 296, 100090. [Google Scholar] [CrossRef]
- Williams, W.S. The thermal conductivity of metallic ceramics. JOM 1998, 50, 62–66. [Google Scholar] [CrossRef]
- Madsen, G.K.H.; Blaha, P.; Schwarz, K.; Sjöstedt, E.; Nordström, L. Efficient linearization of the augmented plane-wave method. Phys. Rev. B-Condens. Matter Mater. Phys. 2001, 64, 195134. [Google Scholar] [CrossRef]
- Irfan, M.; Azam, S.; Dahshan, A.; El Bakkali, I.; Nouneh, K. First-principles study of opto-electronic and thermoelectric properties of SrCdSnX4 (X=S, Se, Te) alkali metal chalcogenides. Comput. Condens. Matter 2021, 30, e00625. [Google Scholar] [CrossRef]
- Žutić, I.; Fabian, J.; Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 2004, 76, 323. [Google Scholar] [CrossRef]
- Boehnke, A.; Martens, U.; Sterwerf, C.; Niesen, A.; Huebner, T.; Von Der Ehe, M.; Meinert, M.; Kuschel, T.; Thomas, A.; Heiliger, C.; et al. Large magneto-Seebeck effect in magnetic tunnel junctions with half-metallic Heusler electrodes. Nat. Commun. 2017, 8, 1626. [Google Scholar] [CrossRef] [PubMed]
- Deng, H. Theoretical prediction of the structural, electronic, mechanical and thermodynamic properties of the binary α-As 2 Te 3 and β-As 2 Te 3. J. Alloy. Compd. 2016, 656, 695–701. [Google Scholar] [CrossRef]
- Mouhat, F.; Coudert, F.-X. Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B-Condens. Matter Mater. Phys. 2014, 90, 224104. [Google Scholar] [CrossRef]
- Beckstein, O.; Klepeis, J.E.; Hart, G.L.W.; Pankratov, O. First-principles elastic constants and electronic structure ofα−Pt2Siand PtSi. Phys. Rev. B-Condens. Matter Mater. Phys. 2001, 63, 134112. [Google Scholar] [CrossRef]
- Reuss, A. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. ZAMM-J. Appl. Math. Mech./Z. Für Angew. Math. Und Mech. 1929, 9, 49–58. [Google Scholar] [CrossRef]
- Hill, R. The Elastic Behaviour of a Crystalline Aggregate. Proc. Phys. Soc. Sect. A 1952, 65, 349. [Google Scholar] [CrossRef]
- Pugh, S.F. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. Ser. 1954, 45, 823–843. [Google Scholar] [CrossRef]
- Varshney, D.; Jain, S.; Shriya, S.; Khenata, R. High-pressure and temperature-induced structural, elastic, and thermodynamical properties of strontium chalcogenides. J. Theor. Appl. Phys. 2016, 10, 163–193. [Google Scholar] [CrossRef]
- Ali, M.A.; Hossain, M.A.; Rayhan, M.A.; Hossain, M.M.; Uddin, M.M.; Roknuzzaman, M.; Ostrikov, K.; Islam, A.K.M.A.; Naqib, S.H. First-principles study of elastic, electronic, optical and thermoelectric properties of newly synthesized K2Cu2GeS4 chalcogenide. J. Alloy. Compd. 2019, 781, 37–46. [Google Scholar] [CrossRef]
- Benkabou, A.; Bouafia, H.; Sahli, B.; Abidri, B.; Ameri, M.; Hiadsi, S.; Rached, D.; Bouhafs, B.; Benkhettou, N.; Al-Douri, Y. Structural, elastic, electronic and thermodynamic investigations of neptunium chalcogenides: First-principles calculations. Chin. J. Phys. 2016, 54, 33–41. [Google Scholar] [CrossRef]
- Heciri, D.; Belkhir, H.; Belghit, R.; Bouhafs, B.; Khenata, R.; Ahmed, R.; Bouhemadou, A.; Ouahrani, T.; Wang, X.; Bin Omran, S. Insight into the structural, elastic and electronic properties of tetragonal inter-alkali metal chalcogenides CsNaX (X=S, Se, and Te) from first-principles calculations. Mater. Chem. Phys. 2019, 221, 125–137. [Google Scholar] [CrossRef]
- Chen, X.-Q.; Niu, H.; Li, D.; Li, Y. Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 2011, 19, 1275–1281. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, B.; Zhao, Z. Microscopic theory of hardness and design of novel superhard crystals. Int. J. Refract. Met. Hard Mater. 2012, 33, 93–106. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, X.; Gall, D.; Khare, S. First-principles investigation of the structural, mechanical and electronic properties of the NbO-structured 3d, 4d and 5d transition metal nitrides. Comput. Mater. Sci. 2014, 84, 365–373. [Google Scholar] [CrossRef]
- Liu, Z.T.Y.; Zhou, X.; Khare, S.V.; Gall, D. Structural, mechanical and electronic properties of 3d transition metal nitrides in cubic zincblende, rocksalt and cesium chloride structures: A first-principles investigation. J. Phys. Condens. Matter 2014, 26, 025404. [Google Scholar] [CrossRef]
- Zhou, X.; Gall, D.; Khare, S.V. Mechanical properties and electronic structure of anti-ReO3 structured cubic nitrides, M3N, of d block transition metals M: An ab initio study. J. Alloy. Compd. 2014, 595, 80–86. [Google Scholar] [CrossRef]
- Luan, X.; Qin, H.; Liu, F.; Dai, Z.; Yi, Y.; Li, Q. The Mechanical Properties and Elastic Anisotropies of Cubic Ni3Al from First Principles Calculations. Crystals 2018, 8, 307. [Google Scholar] [CrossRef]
- Ranganathan, S.I.; Ostoja-Starzewski, M. Universal Elastic Anisotropy Index. Phys. Rev. Lett. 2008, 101, 055504. [Google Scholar] [CrossRef]
- Sun, L.; Gao, Y.; Xiao, B.; Li, Y.; Wang, G. Anisotropic elastic and thermal properties of titanium borides by first-principles calculations. J. Alloy. Compd. 2013, 579, 457–467. [Google Scholar] [CrossRef]
- Ravindran, P.; Fast, L.; Korzhavyi, P.; Johansson, B.; Wills, J.; Eriksson, O. Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2. J. Appl. Phys. 1998, 84, 4891–4904. [Google Scholar] [CrossRef]
- Thakur, V.; Pagare, G. Theoretical calculations of elastic, mechanical and thermal properties of REPt3 (RE = Sc, Y and Lu) intermetallic compounds based on DFT. Indian J. Phys. 2018, 92, 1503–1513. [Google Scholar] [CrossRef]
- Yao, H.; Ouyang, L.; Ching, W.-Y. Ab Initio Calculation of Elastic Constants of Ceramic Crystals. J. Am. Ceram. Soc. 2007, 90, 3194–3204. [Google Scholar] [CrossRef]
# | Crystal | Abbreviation | Space Group | a, b, c(Å), α, β, γ (Degree) (Experimental) | a, b, c(Å), α, β, γ (Degree) (Our Calculations) |
---|---|---|---|---|---|
1 | K2Zn(H2P2O7)2·2H2O | K2Zn-1 | Ortho, Pnma(62) | 9.770, 10.980, 13.420, 90.0, 90.0, 90.0 [24] | 10.385, 11.229, 13.566, 90.0, 90.0, 90.0 |
2 | K2Zn(H2P2O7)2·2H2O | K2Zn-2 | Tric, P-1(2) | 6.827, 7.333, 7.570, 80.753, 72.547, 83.442 [30] | 6.972, 7.466, 7.630, 80.754, 73.419, 84.039 |
3 | K2Cu(H2P2O7)2·2H2O | K2Cu-3 | Ortho, Pnma(62) | 9.899, 10.781, 13.401, 90.0, 90.0, 90.0 [24] | 9.835, 11.662, 14.083, 90.0, 90.0, 90.0 |
4 | K2Cu(H2P2O7)2·2H2O | K2Cu-4 | Tric, P-1(2) | 6.856, 7.314, 7.557, 81.028, 72.327, 83.697 [31] | 7.074, 7.424, 7.604, 78.940, 71.785, 83.500 |
5 | K2Ni(H2P2O7)2·2H2O | K2Ni-5 | Ortho, Pnma(62) | 9.912, 10.774, 13.422, 90.0, 90.0, 90.0 [24] | 10.815, 11.132, 14.568, 90.0, 90.0, 90.0 |
6 | K2Ni(H2P2O7)2·2H2O | K2Ni-6 | Tric, P-1(2) | 6.855, 7.312, 7.561, 81.012, 72.301, 83.691 [32] | 7.153, 7.382, 7.658, 77.933, 70.398, 83.217 |
7 | K2Co(H2P2O7)2·2H2O | K2Co-7 | Tric, P-1(2) | 6.874, 7.357, 7.614, 80.740, 72.397, 83.484 [66] | 7.087, 7.647, 7.548, 77.860, 67.386, 87.327 |
8 | K2Mg(H2P2O7)2·2H2O | K2Mg-8 | Tric, P-1(2) | 6.857, 7.362, 7.620, 81.044, 72.248, 83.314 [29] | 6.968, 7.478, 7.662, 81.170, 73.303, 83.516 |
9 | Rb2Zn(H2P2O7)2·2H2O | Rb2Zn-9 | Tric, P-1(2) | 6.957, 7.362, 7.794, 81.851, 70.622, 86.263 [18] | 7.068, 7.486, 7.813, 81.840, 71.764, 86.863 |
10 | Rb2Mg(H2P2O7)2·2H2O | Rb2Mg-10 | Tric, P-1(2) | 6.955, 7.375, 7.812, 81.986, 70.275, 85.988 [18] | 7.054, 7.488, 7.835, 82.119, 71.265, 86.504 |
11 | Rb2Co(H2P2O7)2·2H2O | Rb2Co-11 | Tric, P-1(2) | 6.980, 7.370, 7.816, 81.740, 70.350, 86.340 [68] | 7.071, 7.359, 7.709, 82.405, 71.758, 87.859 |
12 | (NH4)2Zn(H2P2O7)2·2H2O | (NH4)2Zn-12 | Tric, P-1(2) | 7.003, 7.330, 7.789, 81.229, 71.064, 88.172 [25] | 7.330, 6.930, 7.732, 84.653, 71.551, 88.116 |
13 | (NH4)2Mg(H2P2O7)2·2H2O | (NH4)2Mg-13 | Tric, P-1(2) | 7.076, 7.431, 7.894, 81.420, 70.900, 87.780 [13] | 7.138, 7.432, 7.818, 81.516, 71.444, 89.924 |
14 | (NH4)2Ni(H2P2O7)2·2H2O | (NH4)2Ni-14 | Tric, P-1(2) | 7.034, 7.321, 7.792, 81.530, 70.910, 88.210 [26] | 7.266, 7.338, 7.917, 79.058, 68.138, 88.466 |
15 | (NH4)2Co(H2P2O7)2·2H2O | (NH4)2Co-15 | Tric, P-1(2) | 7.067, 7.368, 7.852, 81.230, 70.680, 88.540 [28] | 7.220, 7.286, 7.804, 80.824, 69.610, 89.739 |
16 | (NH4)2Mn(H2P2O7)2·2H2O | (NH4)2Mn-16 | Tric, P-1(2) | 7.003, 7.440, 7.877, 80.444, 71.359, 87.408 [27] | 7.144, 7.322, 7.739, 81.831, 71.537, 90.547 |
17 | Tl2Zn(H2P2O7)2·2H2O | Tl2Zn-17 | Tric, P-1(2) | 6.963, 7.363, 7.740, 81.590, 71.441, 86.323 [67] | 7.078, 7.523, 7.707, 81.487, 73.016, 86.740 |
18 | Tl2Ni(H2P2O7)2·2H2O | Tl2Ni-18 | Tric, P-1(2) | 6.966, 7.308, 7.702, 81.801, 71.185, 86.528 [67] | 7.089, 7.432, 7.617, 81.500, 73.213, 87.502 |
19 | Tl2Mg(H2P2O7)2·2H2O | Tl2Mg-19 | Tric, P-1(2) | 6.962, 7.364, 7.771, 81.801, 70.860, 86.137 [67] | 7.066, 7.519, 7.723, 81.825, 72.726, 86.339 |
20 | Tl2Mn(H2P2O7)2·2H2O | Tl2Mn-20 | Tric, P-1(2) | 6.958, 7.475, 7.825, 80.723, 71.912, 85.661 [67] | 7.095, 7.439, 7.625, 81.901, 73.026, 86.945 |
21 | Tl2Co(H2P2O7)2·2H2O | Tl2Co-21 | Tric, P-1(2) | 6.977, 7.363, 7.769, 81.421, 71.114, 86.424 [67] | 7.096, 7.399, 7.597, 81.827, 73.038, 87.597 |
# | Crystal | # of Atoms | Eg (eV) | TBOD (e−/Å3) | n | ωp (eV) |
---|---|---|---|---|---|---|
1 | K2Zn-1 | 124 | 4.7 | 0.0194 | 1.483 | 23.10 |
2 | K2Zn-2 | 31 | 5.0 | 0.0217 | 1.466 | 22.10 |
3 | K2Cu-3 | 124 | - | 0.0188 | - | - |
4 | K2Cu-4 | 31 | 3.8 | 0.0122 | 1.533 | 23.00 |
5 | K2Ni-5 | 124 | - | 0.0086 | - | - |
6 | K2Ni-6 | 31 | - | 0.0220 | 1.500 | 23.10 |
7 | K2Co-7 | 31 | - | 0.0222 | - | - |
8 | K2Mg-8 | 31 | 5.4 | 0.0217 | 1.449 | 22.50 |
9 | Rb2Zn-9 | 31 | 4.9 | 0.0207 | 1.450 | 22.00 |
10 | Rb2Mg-10 | 31 | 5.1 | 0.0209 | 1.456 | 21.50 |
11 | Rb2Co-11 | 31 | 0.6 | 0.0215 | 1.718 | 22.05 |
12 | (NH4)2Zn-12 | 39 | 4.6 | 0.0288 | 1.481 | 21.90 |
13 | (NH4)2Mg-13 | 39 | 5.1 | 0.0276 | 1.446 | 21.80 |
14 | (NH4)2Ni-14 | 39 | 1.2 | 0.0280 | 1.483 | 21.00 |
15 | (NH4)2Co-15 | 39 | - | 0.0284 | 1.500 | 21.90 |
16 | (NH4)2Mn-16 | 39 | 0.6 | 0.0286 | 1.503 | 21.80 |
17 | Tl2Zn-17 | 31 | 3.05 | 0.0202 | 1.703 | 21.10 |
18 | Tl2Ni-18 | 31 | 2.05 | 0.0202 | - | - |
19 | Tl2Mg-19 | 31 | 3.2 | 0.0203 | 1.688 | 21.10 |
20 | Tl2Mn-20 | 31 | 0.1 | 0.0210 | 1.844 | 20.50 |
21 | Tl2Co-21 | 31 | 0.5 | 0.0209 | 2.098 | 21.30 |
# | Crystal | Q*(in e−) |
---|---|---|
1 | K2Zn-1 | 11.092(Zn), 6.127(K), 2.992(P), 6.836(O), 0.665(H) |
2 | K2Zn-2 | 11.132 (Zn), 6.197(K), 2.807(P), 6.918(O), 0.569(H) |
3 | K2Cu-3 | 10.269(Cu), 6.114(K), 2.792(P), 6.873(O), 0.670(H) |
4 | K2Cu-4 | 10.349(Cu), 6.202(K), 2.809(P), 6.904(O), 0.569(H) |
5 | K2Ni-5 | 9.378(Ni), 6.142(K), 3.044(P), 6.814(O), 0.643(H) |
6 | K2Ni-6 | 9.344(Ni), 6.214(K), 2.804(P), 6.905(O), 0.567(H) |
7 | K2Co-7 | 8.348(Co), 6.232(K), 2.799(P), 6.906(O), 0.562(H) |
8 | K2Mg-8 | 0.826(Mg), 6.199(K), 2.816(P), 6.934(O), 0.571(H) |
9 | Rb2Zn-9 | 11.125(Zn), 6.191(Rb), 2.812(P), 6.920(O), 0.565(H) |
10 | Rb2Mg-10 | 0.825(Mg), 6.190(Rb), 2.821(P), 6.936(O), 0.568(H) |
11 | Rb2Co-11 | 8.358(Co), 6.196(Rb), 2.817(P), 6.904(O), 0.566(H) |
12 | (NH4)2Zn-12 | 11.125(Zn), 5.803(N), 2.801(P), 6.921(O), 0.583(H) |
13 | (NH4)2Mg-13 | 0.794(Mg), 5.807(N), 2.805(P), 6.942(O), 0.581(H) |
14 | (NH4)2Ni-14 | 9.318(Ni), 5.816(N), 2.789(P), 6.911(O), 0.582(H) |
15 | (NH4)2Co-15 | 8.332(Co), 5.809(N), 2.795(P), 6.910(O), 0.583(H) |
16 | (NH4)2Mn-16 | 6.349(Mn), 5.801(N), 2.797(P), 6.910(O), 0.581(H) |
17 | Tl2Zn-17 | 11.124(Zn), 12.296(Tl), 2.801(P), 6.911(O), 0.563(H) |
18 | Tl2Ni-18 | 9.322(Ni), 12.298(Tl), 2.806(P), 6.899(O), 0.559(H) |
19 | Tl2Mg-19 | 0.814(Mg), 12.301(Tl), 2.809(P), 6.927(O), 0.565(H) |
20 | Tl2Mn-20 | 6.346(Mn), 12.306(Tl), 2.804(P), 6.895(O), 0.562(H) |
21 | Tl2Co-21 | 8.348(Co), 12.303(Tl), 2.807(P), 6.895(O), 0.562(H) |
# | Crystal | Eg (eV) | n |
---|---|---|---|
3 | K2Cu-3 | 1.39 (spin-up) | 1.342 (spin-up), 1.483 (spin-down) |
4 | K2Cu-4 | 3.8 (spin-up), 0.2 (spin-down) | 1.265 (spin-up), 1.342 (spin-down) |
7 | K2Co-7 | 0.7 (spin-up) | 1.273 (spin-up) |
11 | Rb2Co-11 | 0.6 (spin-down) | 1.483 (spin-up), 1.295 (spin-down) |
15 | (NH4)2Co-15 | 0.4 (spin-up) | 1.265 (spin-up, spin-down) |
16 | (NH4)2Mn-16 | 0.1 (spin-up) | 1.265 (spin-up, spin-down) |
20 | Tl2Mn-20 | 0.1 (spin-up) | 1.449 (spin-up), 1.643 (spin-down) |
21 | Tl2Co-21 | 0.6 (spin-down) | 1.789 (spin-up), 1.449 (spin-down) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasan, S.; Rulis, P.; Ching, W.-Y. First-Principles Calculations of the Structural, Electronic, Optical, and Mechanical Properties of 21 Pyrophosphate Crystals. Crystals 2022, 12, 1139. https://doi.org/10.3390/cryst12081139
Hasan S, Rulis P, Ching W-Y. First-Principles Calculations of the Structural, Electronic, Optical, and Mechanical Properties of 21 Pyrophosphate Crystals. Crystals. 2022; 12(8):1139. https://doi.org/10.3390/cryst12081139
Chicago/Turabian StyleHasan, Sahib, Paul Rulis, and Wai-Yim Ching. 2022. "First-Principles Calculations of the Structural, Electronic, Optical, and Mechanical Properties of 21 Pyrophosphate Crystals" Crystals 12, no. 8: 1139. https://doi.org/10.3390/cryst12081139
APA StyleHasan, S., Rulis, P., & Ching, W. -Y. (2022). First-Principles Calculations of the Structural, Electronic, Optical, and Mechanical Properties of 21 Pyrophosphate Crystals. Crystals, 12(8), 1139. https://doi.org/10.3390/cryst12081139