A Comparative Study on the K-ion Storage Behavior of Commercial Carbons
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Materials’ Characterization
2.3. Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Choi, J.W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013. [Google Scholar] [CrossRef]
- Liu, Z.; Luo, X.; Qin, L.; Fang, G.; Liang, S. Progress and prospect of low-temperature zinc metal batteries. Adv. Powder Mater. 2022, 1, 100011. [Google Scholar] [CrossRef]
- Cheng, J.; Hou, G.; Chen, Q.; Li, D.; Li, K.; Yuan, Q.; Wang, J.; Ci, L. Sheet-like garnet structure design for upgrading PEO-based electrolyte. Chem. Eng. J. 2022, 429, 132343. [Google Scholar] [CrossRef]
- Liu, Z.; Qin, L.; Cao, X.; Zhou, J.; Pan, A.; Fang, G.; Wang, S.; Liang, S. Ion migration and defect effect of electrode materials in multivalent-ion batteries. Prog. Mater. Sci. 2022, 125, 100911. [Google Scholar] [CrossRef]
- Vaalma, C.; Buchholz, D.; Weil, M.; Passerini, S. A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 2018, 3, 18013. [Google Scholar] [CrossRef]
- Duffner, F.; Kronemeyer, N.; Tübke, J.; Leker, J.; Winter, M.; Schmuch, R. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat. Energy 2021, 6, 123–134. [Google Scholar] [CrossRef]
- Usiskin, R.; Lu, Y.; Popovic, J.; Law, M.; Balaya, P.; Hu, Y.-S.; Maier, J. Fundamentals, status and promise of sodium-based batteries. Nat. Rev. Mater. 2021, 6, 1020–1035. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Y.; Guo, Z. Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci. Adv. 2019, 5, eaav7412. [Google Scholar] [CrossRef]
- Hosaka, T.; Kubota, K.; Hameed, A.S.; Komaba, S. Research Development on K-Ion Batteries. Chem. Rev. 2020, 120, 6358–6466. [Google Scholar] [CrossRef]
- Hu, Y.-S.; Li, Y. Unlocking Sustainable Na-Ion Batteries into Industry. ACS Energy Lett. 2021, 6, 4115–4117. [Google Scholar] [CrossRef]
- Okamoto, Y. Density Functional Theory Calculations of Alkali Metal (Li, Na, and K) Graphite Intercalation Compounds. J. Phys. Chem. C 2014, 118, 16–19. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, F.; Wang, J.; Liu, Y.; Chen, H.; Jungjohann, K.L.; Xu, Y.; Zhu, Y.; Bigio, D.; Zhu, T.; et al. In Situ Transmission Electron Microscopy Study of Electrochemical Sodiation and Potassiation of Carbon Nanofibers. Nano Lett. 2014, 14, 3445–3452. [Google Scholar] [CrossRef]
- Jian, Z.; Luo, W.; Ji, X. Carbon Electrodes for K-Ion Batteries. J. Am. Chem. Soc. 2015, 137, 11566–11569. [Google Scholar] [CrossRef]
- Komaba, S.; Hasegawa, T.; Dahbi, M.; Kubota, K. Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem. Commun. 2015, 60, 172–175. [Google Scholar] [CrossRef]
- Luo, W.; Wan, J.; Ozdemir, B.; Bao, W.; Chen, Y.; Dai, J.; Lin, H.; Xu, Y.; Gu, F.; Barone, V.; et al. Potassium Ion Batteries with Graphitic Materials. Nano Lett. 2015, 15, 7671–7677. [Google Scholar] [CrossRef] [PubMed]
- Morozova, P.A.; Trussov, I.A.; Rupasov, D.P.; Nikitina, V.A.; Abakumov, A.M.; Fedotov, S.S. Exploring the Role of Crystal Water in Potassium Manganese Hexacyanoferrate as a Cathode Material for Potassium-Ion Batteries. Crystals 2021, 11, 895. [Google Scholar] [CrossRef]
- Okoshi, M.; Yamada, Y.; Komaba, S.; Yamada, A.; Nakai, H. Theoretical Analysis of Interactions between Potassium Ions and Organic Electrolyte Solvents: A Comparison with Lithium, Sodium, and Magnesium Ions. J. Electrochem. Soc. 2016, 164, A54–A60. [Google Scholar] [CrossRef]
- Li, D.; Zhu, M.; Chen, L.; Chen, L.; Zhai, W.; Ai, Q.; Hou, G.; Sun, Q.; Liu, Y.; Liang, Z.; et al. Sandwich-Like FeCl3@C as High-Performance Anode Materials for Potassium-Ion Batteries. Adv. Mater. Interfaces 2018, 5, 1800606. [Google Scholar] [CrossRef]
- An, Y.; Fei, H.; Zeng, G.; Ci, L.; Xi, B.; Xiong, S.; Feng, J. Commercial expanded graphite as a low–cost, long-cycling life anode for potassium–ion batteries with conventional carbonate electrolyte. J. Power Sources 2018, 378, 66–72. [Google Scholar] [CrossRef]
- Fan, L.; Ma, R.; Zhang, Q.; Jia, X.; Lu, B. Graphite Anode for a Potassium-Ion Battery with Unprecedented Performance. Angew. Chem. Int. Ed. 2019, 58, 10500–10505. [Google Scholar] [CrossRef]
- Gu, M.; Fan, L.; Zhou, J.; Rao, A.M.; Lu, B. Regulating Solvent Molecule Coordination with KPF6 for Superstable Graphite Potassium Anodes. ACS Nano 2021, 15, 9167–9175. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Mao, J.; Zhang, L.; Pang, W.K.; Du, A.; Guo, Z. Manipulating the Solvation Structure of Nonflammable Electrolyte and Interface to Enable Unprecedented Stability of Graphite Anodes beyond 2 Years for Safe Potassium-Ion Batteries. Adv. Mater. 2021, 33, 2006313. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Han, D.; Dong, J.; Qin, L.; Li, X.; Zhai, D.; Li, B.; Wu, Y.; Kang, F. Unveiling the influence of electrode/electrolyte interface on the capacity fading for typical graphite-based potassium-ion batteries. Energy Storage Mater. 2020, 24, 319–328. [Google Scholar] [CrossRef]
- Lu, C.; Sun, Z.; Yu, L.; Lian, X.; Yi, Y.; Li, J.; Liu, Z.; Dou, S.; Sun, J. Enhanced Kinetics Harvested in Heteroatom Dual-Doped Graphitic Hollow Architectures toward High Rate Printable Potassium-Ion Batteries. Adv. Energy Mater. 2020, 10, 2001161. [Google Scholar] [CrossRef]
- Zhang, W.; Ming, J.; Zhao, W.; Dong, X.; Hedhili, M.N.; Costa PM, F.J.; Alshareef, H.N. Graphitic Nanocarbon with Engineered Defects for High-Performance Potassium-Ion Battery Anodes. Adv. Funct. Mater. 2019, 29, 1903641. [Google Scholar] [CrossRef]
- Cao, B.; Zhang, Q.; Liu, H.; Xu, B.; Zhang, S.; Zhou, T.; Mao, J.; Pang, W.K.; Guo, Z.; Li, A.; et al. Graphitic Carbon Nanocage as a Stable and High Power Anode for Potassium-Ion Batteries. Adv. Energy Mater. 2018, 8, 1801149. [Google Scholar] [CrossRef]
- Share, K.; Cohn, A.P.; Carter, R.; Rogers, B.; Pint, C.L. Role of Nitrogen-Doped Graphene for Improved High-Capacity Potassium Ion Battery Anodes. ACS Nano 2016, 10, 9738–9744. [Google Scholar] [CrossRef]
- Lei, H.; Li, J.; Zhang, X.; Ma, L.; Ji, Z.; Wang, Z.; Pan, L.; Tan, S.; Mai, W. A review of hard carbon anode: Rational design and advanced characterization in potassium ion batteries. InfoMat 2022, 4, e12272. [Google Scholar] [CrossRef]
- Wu, X.; Chen, Y.; Xing, Z.; Lam CW, K.; Pang, S.-S.; Zhang, W.; Ju, Z. Advanced Carbon-Based Anodes for Potassium-Ion Batteries. Adv. Energy Mater. 2019, 9, 1900343. [Google Scholar] [CrossRef]
- Jian, Z.; Xing, Z.; Bommier, C.; Li, Z.; Ji, X. Hard Carbon Microspheres: Potassium-Ion Anode Versus Sodium-Ion Anode. Adv. Energy Mater. 2016, 6, 1501874. [Google Scholar] [CrossRef]
- Li, D.; Ji, F.; Liu, T.; Zhao, X.; Sun, Q.; Liu, Y.; Wang, Y.; Zhang, J.; Ci, L. Trash to treasure: Recycling discarded agarose gel for practical Na/K-ion batteries. J. Mater. Chem. A 2022, 10, 15026–15035. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H. Designing carbon anodes for advanced potassium-ion batteries: Materials, modifications, and mechanisms. Adv. Powder Mater. 2022, 1, 100057. [Google Scholar] [CrossRef]
- Sun, Q.; Li, D.; Cheng, J.; Dai, L.; Guo, J.; Liang, Z.; Ci, L. Nitrogen-doped carbon derived from pre-oxidized pitch for surface dominated potassium-ion storage. Carbon 2019, 155, 601–610. [Google Scholar] [CrossRef]
- Li, D.; Ren, X.; Ai, Q.; Sun, Q.; Zhu, L.; Liu, Y.; Liang, Z.; Peng, R.; Si, P.; Lou, J.; et al. Facile Fabrication of Nitrogen-Doped Porous Carbon as Superior Anode Material for Potassium-Ion Batteries. Adv. Energy Mater. 2018, 8, 1802386. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, C.; Zhou, M.; Fu, Q.; Zhao, C.; Wu, M.; Lei, Y. Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 2018, 9, 1720. [Google Scholar] [CrossRef]
- Yang, J.; Ju, Z.; Jiang, Y.; Xing, Z.; Xi, B.; Feng, J.; Xiong, S. Enhanced Capacity and Rate Capability of Nitrogen/Oxygen Dual-Doped Hard Carbon in Capacitive Potassium-Ion Storage. Adv. Mater. 2018, 30, 1700104. [Google Scholar] [CrossRef]
- Cheng, B.; Li, X.; Pan, L.; Xu, H.; Duan, H.; Wu, Q.; Yin, B.; He, H. Ultra-Thin Wrinkled Carbon Sheet as an Anode Material of High-Power-Density Potassium-Ion Batteries. Molecules 2022, 27, 2973. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhao, K.; La, M.; Yang, C. Insight into a Nitrogen-Doping Mechanism in a Hard-Carbon-Microsphere Anode Material for the Long-Term Cycling of Potassium-Ion Batteries. Materials 2022, 15, 4249. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, Y.-X.; Xu, Y.-S.; Meng, Q.-S.; Gao, J.-C.; Sun, Y.-G.; Hu, Y.-S.; Chang, B.-B.; Liu, C.-T.; Cao, A.-M. Pitch-Derived Soft Carbon as Stable Anode Material for Potassium Ion Batteries. Adv. Mater. 2020, 32, 2000505. [Google Scholar] [CrossRef]
- Yao, X.; Ke, Y.; Ren, W.; Wang, X.; Xiong, F.; Yang, W.; Qin, M.; Li, Q.; Mai, L. Defect-Rich Soft Carbon Porous Nanosheets for Fast and High-Capacity Sodium-Ion Storage. Adv. Energy Mater. 2019, 9, 1803260. [Google Scholar] [CrossRef]
- Jian, Z.; Hwang, S.; Li, Z.; Hernandez, A.S.; Wang, X.; Xing, Z.; Su, D.; Ji, X. Hard–Soft Composite Carbon as a Long-Cycling and High-Rate Anode for Potassium-Ion Batteries. Adv. Funct. Mater. 2017, 27, 1700324. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, J.; Ong SJ, H.; Yao, Q.; Shi, X.; Hou, K.; Xu, Z.J.; Guan, L. High-Rate and Ultralong Cycle-Life Potassium Ion Batteries Enabled by In Situ Engineering of Yolk–Shell FeS2@C Structure on Graphene Matrix. Adv. Energy Mater. 2018, 8, 1802565. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, Y.; Sun, J.; Ye, W.; Ke, C.; Cai, M.; Gao, H.; Wei, P.; Zhang, Q.; Wang, M.-S. Anti-Aggregation of Nanosized CoS2 for Stable K-Ion Storage: Insights into Aggregation-Induced Electrode Failures. Adv. Energy Mater. 2022, 12, 2201259. [Google Scholar] [CrossRef]
- Ji, F.; Liu, T.; Li, Y.; Li, D.; Ci, L. Ball-Milling Strategy for Fast and Stable Potassium-Ion Storage in Antimony-Carbon Composite Anodes. ChemElectroChem 2020, 7, 4587–4593. [Google Scholar] [CrossRef]
- Zheng, J.; Yang, Y.; Fan, X.; Ji, G.; Ji, X.; Wang, H.; Hou, S.; Zachariah, M.R.; Wang, C. Extremely stable antimony–carbon composite anodes for potassium-ion batteries. Energy Environ. Sci. 2019, 12, 615–623. [Google Scholar] [CrossRef]
- Wu, Y.; Hu, S.; Xu, R.; Wang, J.; Peng, Z.; Zhang, Q.; Yu, Y. Boosting Potassium-Ion Battery Performance by Encapsulating Red Phosphorus in Free-Standing Nitrogen-Doped Porous Hollow Carbon Nanofibers. Nano Lett. 2019, 19, 1351–1358. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Huang, H.-B.; Feng, Y.; Wu, Z.-S.; Yu, Y. The Promise and Challenge of Phosphorus-Based Composites as Anode Materials for Potassium-Ion Batteries. Adv. Mater. 2019, 31, 1901414. [Google Scholar] [CrossRef]
- Lei, K.; Wang, C.; Liu, L.; Luo, Y.; Mu, C.; Li, F.; Chen, J. A Porous Network of Bismuth Used as the Anode Material for High-Energy-Density Potassium-Ion Batteries. Angew. Chem. Int. Ed. 2018, 57, 4687–4691. [Google Scholar] [CrossRef]
- Gu, Y.; Ru Pei, Y.; Zhao, M.; Cheng Yang, C.; Jiang, Q. Sn-, Sb- and Bi-Based Anodes for Potassium Ion Battery. Chem. Rec. 2022, e202200098. [Google Scholar] [CrossRef]
- Chong, S.; Qiao, S.; Wei, X.; Li, T.; Yuan, L.; Dong, S.; Huang, W. Sb2S3-based conversion-alloying dual mechanism anode for potassium-ion batteries. iScience 2021, 24, 103494. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Fan, L.; Liu, Z.; Chen, S.; Zhang, Q.; Wang, L.; Yang, H.; Yu, X.; Lu, B. In Situ Alloying Strategy for Exceptional Potassium Ion Batteries. ACS Nano 2019, 13, 3703–3713. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Dai, L.; Ren, X.; Ji, F.; Sun, Q.; Zhang, Y.; Ci, L. Foldable potassium-ion batteries enabled by free-standing and flexible SnS2@C nanofibers. Energy Environ. Sci. 2021, 14, 424–436. [Google Scholar] [CrossRef]
- Li, D.; Sun, Q.; Zhang, Y.; Chen, L.; Wang, Z.; Liang, Z.; Si, P.; Ci, L. Surface-Confined SnS2@C@rGO as High-Performance Anode Materials for Sodium- and Potassium-Ion Batteries. ChemSusChem 2019, 12, 2689–2700. [Google Scholar] [CrossRef]
- Sun, Q.; Li, D.; Dai, L.; Liang, Z.; Ci, L. Structural Engineering of SnS2 Encapsulated in Carbon Nanoboxes for High-Performance Sodium/Potassium-Ion Batteries Anodes. Small 2020, 16, 2005023. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Zhang, Y.; Sun, Q.; Zhang, S.; Wang, Z.; Liang, Z.; Si, P.; Ci, L. Hierarchically porous carbon supported Sn4P3 as a superior anode material for potassium-ion batteries. Energy Storage Mater. 2019, 23, 367–374. [Google Scholar] [CrossRef]
- Zhang, W.; Pang, W.K.; Sencadas, V.; Guo, Z. Understanding High-Energy-Density Sn4P3 Anodes for Potassium-Ion Batteries. Joule 2018, 2, 1534–1547. [Google Scholar] [CrossRef]
- Zhang, W.; Mao, J.; Li, S.; Chen, Z.; Guo, Z. Phosphorus-Based Alloy Materials for Advanced Potassium-Ion Battery Anode. J. Am. Chem. Soc. 2017, 139, 3316–3319. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Li, C.-L.; Chen, G.; Ji, F.; Shen, Y.-Y.; Peng, J.; Wang, W.-H. Rational design of Sn4P3/Ti3C2Tx composite anode with enhanced performance for potassium-ion battery. Rare Met. 2022, 41, 2259–2267. [Google Scholar] [CrossRef]
- Rajagopalan, R.; Tang, Y.; Ji, X.; Jia, C.; Wang, H. Advancements and Challenges in Potassium Ion Batteries: A Comprehensive Review. Adv. Funct. Mater. 2020, 30, 1909486. [Google Scholar] [CrossRef]
- Qi, S.-H.; Deng, J.-W.; Zhang, W.-C.; Feng, Y.-Z.; Ma, J.-M. Recent advances in alloy-based anode materials for potassium ion batteries. Rare Met. 2020, 39, 970–988. [Google Scholar] [CrossRef]
- Lei, K.-X.; Wang, J.; Chen, C.; Li, S.-Y.; Wang, S.-W.; Zheng, S.-J.; Li, F.-J. Recent progresses on alloy-based anodes for potassium-ion batteries. Rare Met. 2020, 39, 989–1004. [Google Scholar] [CrossRef]
- Tai, Z.; Zhang, Q.; Liu, Y.; Liu, H.; Dou, S. Activated carbon from the graphite with increased rate capability for the potassium ion battery. Carbon 2017, 123, 54–61. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Chen, Y.; Zhang, H.; Yousaf, M.; Wu, H.; Zou, M.; Cao, A.; Han, R.P.S. Hyperporous Sponge Interconnected by Hierarchical Carbon Nanotubes as a High-Performance Potassium-Ion Battery Anode. Adv. Mater. 2018, 30, 1802074. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Liu, Y.; Ji, F.; Li, D.; Huang, J.; Sun, H.; Wen, S.; Sun, Q.; Lu, J.; Ci, L. A Comparative Study on the K-ion Storage Behavior of Commercial Carbons. Crystals 2022, 12, 1140. https://doi.org/10.3390/cryst12081140
Wang Y, Liu Y, Ji F, Li D, Huang J, Sun H, Wen S, Sun Q, Lu J, Ci L. A Comparative Study on the K-ion Storage Behavior of Commercial Carbons. Crystals. 2022; 12(8):1140. https://doi.org/10.3390/cryst12081140
Chicago/Turabian StyleWang, Yiwei, Yunzhuo Liu, Fengjun Ji, Deping Li, Jinru Huang, Hainan Sun, Shuang Wen, Qing Sun, Jingyu Lu, and Lijie Ci. 2022. "A Comparative Study on the K-ion Storage Behavior of Commercial Carbons" Crystals 12, no. 8: 1140. https://doi.org/10.3390/cryst12081140
APA StyleWang, Y., Liu, Y., Ji, F., Li, D., Huang, J., Sun, H., Wen, S., Sun, Q., Lu, J., & Ci, L. (2022). A Comparative Study on the K-ion Storage Behavior of Commercial Carbons. Crystals, 12(8), 1140. https://doi.org/10.3390/cryst12081140