Enhanced Photocatalytic Performance of Ag3PO4/Mn-ZnO Nanocomposite for the Degradation of Tetracycline Hydrochloride
Abstract
:1. Introduction
2. Experimental Method
2.1. Chemical Reagents
2.2. Fabrication of Materials
2.2.1. Fabrication of Mn-ZnO
2.2.2. Fabrication of Ag3PO4/Mn-ZnO
2.3. Characterization
2.4. Photodegradation Activity
3. Results and Discussion
3.1. XRD Analysis
3.2. SEM, EDX, and TEM Analysis
3.3. UV–Visible Spectroscopy
3.4. FTIR Analysis
3.5. Photoluminescence Analysis
3.6. Photodegradation Activity
3.7. Effect of Scavengers
3.8. Photocatalytic Stability
3.9. Proposed Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tahir, M.B.; Sagir, M. Carbon nanodots and rare metals (RM = La, Gd, Er) doped tungsten oxide nanostructures for photocatalytic dyes degradation and hydrogen production. Sep. Purif. Technol. 2019, 209, 94–102. [Google Scholar] [CrossRef]
- Tahir, M.B.; Nabi, G.; Rafique, M.; Khalid, N.R. Nanostructured-based WO3 photocatalysts: Recent development, activity enhancement, perspectives and applications for wastewater treatment. Int. J. Environ. Sci. Technol. 2017, 14, 2519–2542. [Google Scholar] [CrossRef]
- Pickett, M.T.; Roberson, L.B.; Calabria, J.L.; Bullard, T.J.; Turner, G.; Yeh, D.H. Regenerative water purification for space applications: Needs, challenges, and technologies towards’ closing the loop. Life Sci. Space Res. 2020, 24, 64–82. [Google Scholar] [CrossRef] [PubMed]
- Tahir, M.B.; Kiran, H.; Iqbal, T. The detoxification of heavy metals from aqueous environment using nano-photocatalysis approach: A review. Environ. Sci. Pollut. Res. 2019, 26, 10515–10528. [Google Scholar] [CrossRef]
- Xie, W.; Li, R.; Xu, Q. Enhanced photocatalytic activity of Se- doped TiO2 under visible light irradiation. Sci. Rep. 2018, 8, 8752. [Google Scholar] [CrossRef]
- Santangelo, S. Electrospun nanomaterials for energy applications: Recent advances. Appl. Sci. 2019, 9, 1049. [Google Scholar] [CrossRef]
- Khalid, N.; Hammad, A.; Tahir, M.; Rafique, M.; Iqbal, T.; Nabi, G.; Hussain, M. Enhanced photocatalytic activity of Al and Fe co-doped ZnO nanorods for methylene blue degradation. Ceram. Int. 2019, 45, 21430–21435. [Google Scholar] [CrossRef]
- Chen, J.; Ouyang, W.; Yang, W.; He, J.H.; Fang, X. Recent progress of heterojunction ultraviolet photodetectors: Materials, integrations, and applications. Adv. Funct. Mater. 2020, 30, 1909909. [Google Scholar] [CrossRef]
- Polat, K. Thin film photocatalyst made from Fe2O3/2D graphene/Cu working in the visible region of the solar spectrum. Solid State Commun. 2020, 319, 113993. [Google Scholar] [CrossRef]
- Abebe, B.; Murthy, H.A.; Amare, E. Enhancing the photocatalytic efficiency of ZnO: Defects, heterojunction, and optimization. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100336. [Google Scholar] [CrossRef]
- Wu, G.; Xing, W. Fabrication of ternary visible-light-driven semiconductor photocatalyst and its effective photocatalytic performance. Mater. Technol. 2019, 34, 292–300. [Google Scholar] [CrossRef]
- Tahir, M.; Tasleem, S.; Tahir, B. Recent development in band engineering of binary semiconductor materials for solar driven photocatalytic hydrogen production. Int. J. Hydrogen Energy 2020, 45, 15985–16038. [Google Scholar] [CrossRef]
- Li, Y.; Liu, F.T.; Chang, Y.; Wang, J.; Wang, C.W. High efficient photocatalytic activity from nanostructuralized photonic crystal-like pn coaxial hetero-junction film photocatalyst of Cu3SnS4/TiO2 nanotube arrays. Appl. Surf. Sci. 2017, 426, 770–780. [Google Scholar] [CrossRef]
- Hasija, V.; Raizada, P.; Sudhaik, A.; Sharma, K.; Kumar, A.; Singh, P.; Jonnalagadda, S.B.; Thakur, V.K. Recent advances in noble metal free doped graphitic carbon nitride based nanohybrids for photocatalysis of organic contaminants in water: A review. Appl. Mater. Today 2019, 15, 494–524. [Google Scholar] [CrossRef]
- Tasleem, S.; Tahir, M. Current trends in strategies to improve photocatalytic performance of perovskites materials for solar to hydrogen production. Renew. Sustain. Energy Rev. 2020, 132, 110073. [Google Scholar] [CrossRef]
- Nasr, M.; Eid, C.; Habchi, R.; Miele, P.; Bechelany, M. Recent progress on titanium dioxide nanomaterials for photocatalytic applications. ChemSusChem 2018, 11, 3023–3047. [Google Scholar] [CrossRef]
- Khalid, N.R.; Arshad, A.; Tahir, M.B.; Hussain, M.K. Fabrication of p–n heterojunction Ag2O@Ce2O nanocomposites make enables to improve photocatalytic activity under visible light. Appl. Nanosci. 2021, 11, 199–206. [Google Scholar] [CrossRef]
- Montero-Muñoz, M.; Ibarra, J.E.R.; Rodríguez-Páez, J.E.; Ramirez, A.; A Huamaní-Coaquira, J. Shape-control of Zinc Oxide nanoparticles: Enhancing photocatalytic activity under UV irradiation. J. Phys. Conf. Ser. 2017, 792, 012068. [Google Scholar] [CrossRef]
- Achouri, F.; Corbel, S.; Balan, L.; Mozet, K.; Girot, E.; Medjahdi, G.; Said, M.B.; Ghrabi, A.; Schneider, R. Porous Mn-doped ZnO nanoparticles for enhanced solar and visible light photocatalysis. Mater. Des. 2016, 101, 309–316. [Google Scholar] [CrossRef]
- Thakur, D.; Sharma, A.; Awasthi, A.; Rana, D.S.; Singh, D.; Pandey, S.; Thakur, S. Manganese-Doped Zinc Oxide Nanostructures as Potential Scaffold for Photocatalytic and Fluorescence Sensing Applications. Chemosensors 2020, 8, 120. [Google Scholar] [CrossRef]
- Wang, Y.; Hao, X.; Wang, Z.; Dong, M.; Cui, L. Facile fabrication of Mn2+-doped ZnO photocatalysts by electrospinning. R. Soc. Open Sci. 2020, 7, 191050. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, J.; Yu, S.; Alcocer, E.J.; Shahid, M.; Wang, Z.; Pan, W. Synergistic effect of N-decorated and Mn2+ doped ZnO nanofibers with enhanced photocatalytic activity. Sci. Rep. 2016, 6, 32711. [Google Scholar] [CrossRef]
- Liu, H.Y.; Niu, C.G.; Guo, H.; Liang, C.; Huang, D.W.; Zhang, L.; Yang, Y.Y.; Li, L. In suit constructing 2D/1D MgIn2S4/CdS heterojunction system with enhanced photocatalytic activity towards treatment of wastewater and H2 production. J. Colloid Interface Sci. 2020, 576, 264–279. [Google Scholar] [CrossRef] [PubMed]
- Goswami, B.; Singha, R. Effect of Mn Doping on Optical Properties of ZnO Nanoparticles. Int. J. Innov. Res. Sci. Eng. Technol. 2015, 4, 2577–2582. [Google Scholar]
- Gusmão, L.A.; Peixoto, D.A.; Marinho, J.Z.; Romeiro, F.C.; Gonçalves, R.F.; Longo, E.; de Oliveira, C.A.; Lima, R.C. Alkali influence on ZnO and Ag-doped ZnO nanostructures formation using the microwave-assisted hydrothermal method for fungicidal inhibition. J. Phys. Chem. Solids 2021, 158, 110234. [Google Scholar] [CrossRef]
- Hussain, M.K.; Khalid, N.; Tanveer, M.; Kebaili, I.; Alrobei, H. Fabrication of CuO/MoO3 pn heterojunction for enhanced dyes degradation and hydrogen production from water splitting. Int. J. Hydrogen Energy 2022, 47, 15491–15504. [Google Scholar] [CrossRef]
- Al Farsi, B.; Al Marzouqi, F.; Al-Maashani, M.; Souier, M.T.; Myint, M.T.Z.; Al-Abri, M.Z. Rapid microwave-assisted fabrication of Al-doped zinc oxide nanorods on a glass substrate for photocatalytic degradation of phenol under visible light irradiation. Mater. Sci. Eng. B 2021, 264, 114977. [Google Scholar] [CrossRef]
- Xiong, G.; Pal, U.; Serrano, J.G. Correlations among size, defects, and photoluminescence in ZnO nanoparticles. J. Appl. Phys. 2007, 101, 024317. [Google Scholar] [CrossRef]
- Tanveer, M.; Nisa, I.; Nabi, G.; Hussain, M.K.; Khalid, S.; Qadeer, M. Sol-gel extended hydrothermal pathway for novel Cd-Zn co-doped Mg-ferrite nano-structures and a systematic study of structural, optical and magnetic properties. J. Magn. Magn. Mater. 2022, 553, 169245. [Google Scholar] [CrossRef]
- Zhang, A.; Zhang, J. Effects of europium doping on the photocatalytic behavior of BiVO4. J. Hazard. Mater. 2010, 173, 265–272. [Google Scholar] [CrossRef]
- Semeraro, P.; Bettini, S.; Sawalha, S.; Pal, S.; Licciulli, A.; Marzo, F.; Lovergine, N.; Valli, L.; Giancane, G. Photocatalytic degradation of tetracycline by ZnO/γ-Fe2O3 paramagnetic nanocomposite material. Nanomaterials 2020, 10, 1458. [Google Scholar] [CrossRef]
- Wetchakun, N.; Chainet, S.; Phanichphant, S.; Wetchakun, K. Efficient photocatalytic degradation of methylene blue over BiVO4/TiO2 nanocomposites. Ceram. Int. 2015, 41, 5999–6004. [Google Scholar] [CrossRef]
- Wafi, A.; Szabó-Bárdos, E.; Horváth, O.; Makó, É.; Jakab, M.; Zsirka, B. Coumarin-based quantification of hydroxyl radicals and other reactive species generated on excited nitrogen-doped TiO2. J. Photochem. Photobiol. A Chem. 2021, 404, 112913. [Google Scholar] [CrossRef]
- Siboni, M.S.; Samadi, M.T.; Yang, J.K.; Lee, S.M. Photocatalytic reduction of Cr (VI) and Ni (II) in aqueous solution by synthesized nanoparticle ZnO under ultraviolet light irradiation: A kinetic study. Environ. Technol. 2011, 32, 1573–1579. [Google Scholar] [CrossRef]
- Suharyadi, E.; Muzakki, A.; Istiqomah, N.I.; Puspitarum, D.L.; Purnama, B.; Djuhana, D. Reusability of photocatalytic CoFe2O4@ZnO core–shell nanoparticles for dye degradation. ECS J. Solid State Sci. Technol. 2022, 11, 023004. [Google Scholar] [CrossRef]
- Chen, X.; Yu, C.; Zhu, R.; Li, N.; Chen, J.; Li, S.; Xia, W.; Xu, S.; Wang, H.; Chen, X. Ag3PO4 deposited on CuBi2O4 to construct Z-scheme photocatalyst with excellent visible-light catalytic performance toward the degradation of diclofenac sodium. Nanomaterials 2019, 9, 959. [Google Scholar] [CrossRef]
- Yu, Z.; Moussa, H.; Liu, M.; Schneider, R.; Moliere, M.; Liao, H. Heterostructured metal oxides-ZnO nanorods films prepared by SPPS route for photodegradation applications. Surf. Coat. Technol. 2019, 375, 670–680. [Google Scholar] [CrossRef]
- Batool, M.; Daoush, W.M.; Hussain, M.K. Dye Sequestration Using Biosynthesized Silver Nanoparticles Adsorbent in Aqueous Solutions. Crystals 2022, 12, 662. [Google Scholar] [CrossRef]
- Nemiwal, M.; Zhang, T.C.; Kumar, D. Recent progress in g-C3N4, TiO2 and ZnO based photocatalysts for dye degradation: Strategies to improve photocatalytic activity. Sci. Total Environ. 2021, 767, 144896. [Google Scholar] [CrossRef]
- Qamar, M.A.; Shahid, S.; Javed, M.; Sher, M.; Iqbal, S.; Bahadur, A.; Li, D. Fabricated novel g-C3N4/Mn doped ZnO nanocomposite as highly active photocatalyst for the disinfection of pathogens and degradation of the organic pollutants from wastewater under sunlight radiations. Colloids Surf. A Physicochem. Eng. Asp. 2021, 611, 125863. [Google Scholar] [CrossRef]
Samples | Wavelengths (nm) | Band Gap Energy (eV) |
---|---|---|
Z | 393.53 | 3.15 |
MZ | 403.28 | 3.07 |
AP | 547.80 | 2.26 |
1APMZ | 616.99 | 2.01 |
3 APMZ | 659.42 | 1.88 |
5 APMZ | 631.03 | 1.96 |
Photocatalyst | Dye | Light Source | Time (min) | Degradation (%) | Ref. |
---|---|---|---|---|---|
CuO-MoO3 | Rhodamine B | Visible light | 120 | 99 | [26] |
Ag2O/Ce2O | Methyl orange | Visible light | 150 | 100 | [17] |
Eu/BiVO4 | Methyl orange | Visible light | 180 | 52 | [30] |
ZnO/γ-Fe2O3 | Tetracycline | Visible light | 150 | 89 | [31] |
TiO2/BiVO4 | Methylene blue | Visible light | 120 | 71 | [32] |
APMZ | Tetracycline | Visible light | 120 | 95 | Present work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, M.W.; Azam, H.; Khalid, N.R.; Naeem, S.; Hussain, M.K.; BaQais, A.; Farhan, M.; Souayeh, B.; Zaidi, N.; Khan, K. Enhanced Photocatalytic Performance of Ag3PO4/Mn-ZnO Nanocomposite for the Degradation of Tetracycline Hydrochloride. Crystals 2022, 12, 1156. https://doi.org/10.3390/cryst12081156
Alam MW, Azam H, Khalid NR, Naeem S, Hussain MK, BaQais A, Farhan M, Souayeh B, Zaidi N, Khan K. Enhanced Photocatalytic Performance of Ag3PO4/Mn-ZnO Nanocomposite for the Degradation of Tetracycline Hydrochloride. Crystals. 2022; 12(8):1156. https://doi.org/10.3390/cryst12081156
Chicago/Turabian StyleAlam, Mir Waqas, Hamida Azam, Nadeem R. Khalid, Sumaira Naeem, Muhammad Khalid Hussain, Amal BaQais, Mohd Farhan, Basma Souayeh, Noushi Zaidi, and Kaffayatullah Khan. 2022. "Enhanced Photocatalytic Performance of Ag3PO4/Mn-ZnO Nanocomposite for the Degradation of Tetracycline Hydrochloride" Crystals 12, no. 8: 1156. https://doi.org/10.3390/cryst12081156
APA StyleAlam, M. W., Azam, H., Khalid, N. R., Naeem, S., Hussain, M. K., BaQais, A., Farhan, M., Souayeh, B., Zaidi, N., & Khan, K. (2022). Enhanced Photocatalytic Performance of Ag3PO4/Mn-ZnO Nanocomposite for the Degradation of Tetracycline Hydrochloride. Crystals, 12(8), 1156. https://doi.org/10.3390/cryst12081156