Novel and Classical Materials Used in the Plane of Polarization of Light Rotation: Liquid Crystal with WS2 Nanotubes
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gusev, A.N.; Mazinov, A.S.; Shevchenko, A.I.; Tyutyunik, A.S.; Gurchenko, V.S.; Braga, E.V. The Voltage–Current Characteristics and Photoelectric Effect of Fullerene C60–N-Isoamylisatin 4-Methylphenylhydrazone Heterostructures. Tech. Phys. Lett. 2019, 45, 997–1000. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Serov, S.V.; Shurpo, N.; Likhomanova, S.V.; Timonin, D.N.; Kuzhakov, P.V.; Rozhkova, N.N.; Kityk, I.V.; Plucinski, K.J.; Uskokovic, D.P. Polyimide-fullerene nanostructured materials for nonlinear optics and solar energy applications. J. Mater. Sci. Mater. Electron. 2012, 23, 1538–1542. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Serov, S.V.; Shurpo, N.A.; Rozhkova, N.N. Photoinduced Changes in Refractive Index of Nanostructured Shungite_Containing Polyimide Systems. Tech. Phys. Lett. 2011, 37, 949–951. [Google Scholar] [CrossRef]
- Yu, D.; Park, K.; Durstock, M.; Dai, L. Fullerene-Grafted Graphene for Efficient Bulk Heterojunction Polymer Photovoltaic Devices. J. Phys. Chem. Lett. 2011, 2, 1113–1118. [Google Scholar] [CrossRef]
- Taranko, E.; Wiertel, M.; Taranko, R. Transient electron transport properties of multiple quantum dots systems. J. Appl. Phys. 2012, 111, 023711. [Google Scholar] [CrossRef]
- Prodanov, M.F.; Pogorelova, N.V.; Kryshtal, A.P.; Klymchenko, A.S.; Mely, Y.; Semynozhenko, V.P.; Krivoshey, A.I.; Reznikov, Y.A.; Yarmolenko, S.N.; Goodby, J.W.; et al. Thermodynamically Stable Dispersions of Quantum Dots in a Nematic Liquid Crystal. Langmuir 2013, 29, 9301–9309. [Google Scholar] [CrossRef]
- Lazar, C.A.; Rau, I.; Mihaly, M. Microemulsions based templates for synthesis of DNA materials modified with lanthanide nanoparticles. UPB Sci. Bull. Ser. B 2015, 77, 209–220. [Google Scholar]
- Kamanina, N.V.; Serov, S.V.; Zubtsova, Y.A.; Bretonniere, Y.; Andraud, C.; Baldeck, P.; Kajzar, F. Photorefractive Properties of Some Nano- and Bio-Structured Organic Materials. J. Nanotechnol. Diagn. Treat. 2014, 2, 2–5. [Google Scholar]
- Cao, Y.; Zhang, D.; Yang, Y.; Lin, B.; Lv, J.; Yang, X.; Zhao, H.; Wang, F.; Li, B.; Yi, Y. Dispersed-Monolayer Graphene-Doped Polymer/Silica Hybrid Mach-Zehnder interferometer (MZI) Thermal Optical Switch with Low-Power Consumption and Fast Response. Polymers 2019, 11, 1898. [Google Scholar] [CrossRef]
- Kolmangadi, M.A.; Szymoniak, P.; Smales, G.J.; Alentiev, D.A.; Bermeshev, M.; Böhning, M.; Schönhals, A. Molecular Dynamics of Janus Polynorbornenes: Glass Transitions and Nanophase Separation. Macromolecules 2020, 53, 7410–7419. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E. Principles of Optics, 3rd ed.; Cambridge University Press: Cambridge, UK, 1975; 856p. [Google Scholar]
- Landsberg, G.S. Optika (Optics), 6th ed.; Fizmatlit: Moscow, Russia, 2003; 848p. [Google Scholar]
- Charles, P.P., Jr.; Frank, J.O. Introduction to Nanotechnology; Wiley Interscience: New York, NY, USA, 2003; 400p. [Google Scholar]
- Perelomov, A.M. Rotation of the plane of polarization of light in the case of parity nonconservation. Sov. Phys. Jetp. 1962, 14, 132–134. [Google Scholar]
- Krizhanovskii, D.N.; Sanvitto, D.; Shelykh, I.A.; Glazov, M.M.; Malpuech, G.; Solnyshkov, D.D.; Kavokin, A.; Ceccarelli, S.; Skolnick, M.S.; Roberts, J.S. Rotation of the plane of polarization of light in a semiconductor microcavity. Phys. Rev. B 2006, 73, 073303. [Google Scholar] [CrossRef]
- Ulrich, R.; Simon, A. Polarization optics of twisted single-mode fibers. Appl. Opt. 1979, 18, 2241–2251. [Google Scholar] [CrossRef] [PubMed]
- Ross, J.N. The rotation of the polarization in low birefringence monomode optical fibers due to geometric effects. Opt. Quantum Electron. 1984, 16, 455–461. [Google Scholar] [CrossRef]
- Frins, E.; Dultz, W. Rotation of the polarization plane in optical fibers. J. Lightwave Technol. 1997, 15, 144–147. [Google Scholar] [CrossRef]
- Alaverdyan, R.; Gharagulyan, H.; Grigoryan, H. The investigation of the behaviour of polarization of light passing through chiral liquid-crystalline photonic structures. Proc. SPIE 2011, 8414, 841412. [Google Scholar] [CrossRef]
- Alaverdyan, R.B.; Gevorgyan, A.; Gharagulyan, H.; Grigoryan, H. Experimental Investigation of the Polarization Plane Rotation of Light in Cholesteric Liquid-Crystalline Film with an Anisotropic Defect Layer. Mol. Cryst. Liq. Cryst. 2012, 559, 23–30. [Google Scholar] [CrossRef]
- Tenne, R.; Margulis, L.; Genut, M.; Hodes, G. Polyhedral and cylindrical structures of tungsten disulphide. Nature 1992, 360, 444–446. [Google Scholar] [CrossRef]
- Visic, B.; Panchakarla, L.S.; Tenne, R. Inorganic Nanotubes and Fullerene-like Nanoparticles at the Crossroads between Solid-State Chemistry and Nanotechnology. J. Am. Chem. Soc. 2017, 139, 12865–12878. [Google Scholar] [CrossRef]
- Yadgarov, L.; Visic, B.; Abir, T.; Tenne, R.; Polyakov, A.Y.; Levi, R.; Dolgova, T.V.; Zubyuk, V.V.; Fedyanin, A.A.; Goodilin, E.A.; et al. Strong light–matter interaction in tungsten disulfide nanotubes. Phys. Chem. Chem. Phys. 2018, 20, 20812–20820. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Zubtsova, Y.A.; Toikka, A.S.; Likhomanova, S.V.; Zak, A.; Tenne, R. Temporal characteristics of liquid crystal cell with WS2 nanoparticles: Mesophase sensitization and relief features. Liq. Cryst. Appl. 2020, 20, 34–40. Available online: http://nano.ivanovo.ac.ru/journal/ru/articles/article.php?year=2020&issue=1&first_page=34 (accessed on 5 August 2022). [CrossRef]
- Kamanina, N.; Toikka, A.; Barnash, Y.; Zak, A.; Tenne, R. Influence of Surface Relief on Orientation of Nematic Liquid Crystals: Polyimide Doped with WS2 Nanotubes. Crystals 2022, 12, 391. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Zubtcova, Y.A.; Kuzhakov, P.V.; Zak, A.; Tenne, R. Correlations between spectral, time and orientation parameters of liquid crystal cells with WS2 nanoparticles. Liq. Cryst. Appl. 2020, 20, 41–48. [Google Scholar] [CrossRef]
- Toikka, A.S.; Lomova, L.S.; Kamanina, N.V. Influence of the WS2 nanoperticles on the refractive properties of the liquid crystal compositions. Opt. J. 2021, 88, 75–80. [Google Scholar] [CrossRef]
- Chandrasekar, C. Liquid Crystals; Mir: Moscow, Russia, 1980; 344p. [Google Scholar]
- Vasiliev, A.A.; Casassent, D.; Kompanetz, I.N.; Parfenov, A.V. Spatial Light Modulators; Radio & Svyaz: Moscow, Russia, 1987; 320p. [Google Scholar]
- Zharkova, G.M.; Sonin, A.S. Liquid Crystal Composites; Nauka: Novosibirsk, Russia, 1994; 300p. (In Russian) [Google Scholar]
- Kamanina, N.V.; Likhomanova, S.V.; Studeonov, V.I.; Rau, I.; Dibla, A.; Pawlicka, A. Rotation of the Polarization Plane of Light Via Use of the DNA-Based Structures for Innovative Medical Devices. J. Nanotechnol. Diagn. Treat. 2016, 4, 1–4. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Zubtsova, Y.A.; Serov, S.V.; Baldeck, P.; Bretonniere, Y.; Andraud, C. Structuring of organic matrices: New promising dyes in the manifestation of the effect of rotation of the plane of polarization of light. Liq. Cryst. Appl. 2014, 14, 24–26. Available online: http://nano.ivanovo.ac.ru/journal/articles/492147article_2014_14_3_24-26.pdf (accessed on 5 August 2022).
- Kamanina, N.V.; Zubtsova, Y.A.; Studeonov, V.I.; Baldeck, P.; Bretonniere, Y.; Andraud, C. Structuration of organic matrixes: Innovative perspective water-soluble dyes to realize the effect of the light polarization plane rotation. Liq. Cryst. Appl. 2015, 15, 91–94. Available online: http://nano.ivanovo.ac.ru/journal/articles/717863article_2015_15_1_91-94.pdf (accessed on 5 August 2022).
- Hassanfiroozi, A.; Huang, Y.-P.; Javidi, B.; Shieh, H.-P.D. Hexagonal liquid crystal lens array for 3D endoscopy. Opt. Express 2015, 23, 971–981. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Chen, H.-S. Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications. Opt. Express 2013, 21, 9428. [Google Scholar] [CrossRef]
Extremum | Pure LC | LC with WS2 Sensitizer Using Various Concentration | |||
---|---|---|---|---|---|
0.05 wt.% | 0.1 wt.% | 0.3 wt.% | 0.5 wt.% | ||
Minimum I, ° | 86.1 | 85.7 | 66.4 | 94.8 | 101.5 |
Maximum I, ° | 173.8 | 174.3 | 155.0 | 181.9 | 186.6 |
Minimum II, ° | 266.1 | 266.0 | 245.4 | 272.1 | 279.8 |
Maximum II, ° | 355.5 | 353.4 | 338.1 | 361.8 | 375.5 |
The average deviation from pure LC, ° | −0.5 | −19.2 | 7.3 | 15.5 |
Sample | Dyes or DNA Content in Water, wt.% | Polarization Plane Rotation Angle, ° |
---|---|---|
DNA * water-based solution | 0.3 | 3–3.8 |
ENS-291 ** dye in water | 0.1 | 0.12° |
ENS-295 *** dye in water | 0.1 | 0.2° |
ENS-102 **** dye in water | 0.1 | 0.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamanina, N.; Toikka, A.; Likhomanova, S. Novel and Classical Materials Used in the Plane of Polarization of Light Rotation: Liquid Crystal with WS2 Nanotubes. Crystals 2022, 12, 1185. https://doi.org/10.3390/cryst12091185
Kamanina N, Toikka A, Likhomanova S. Novel and Classical Materials Used in the Plane of Polarization of Light Rotation: Liquid Crystal with WS2 Nanotubes. Crystals. 2022; 12(9):1185. https://doi.org/10.3390/cryst12091185
Chicago/Turabian StyleKamanina, Natalia, Andrey Toikka, and Svetlana Likhomanova. 2022. "Novel and Classical Materials Used in the Plane of Polarization of Light Rotation: Liquid Crystal with WS2 Nanotubes" Crystals 12, no. 9: 1185. https://doi.org/10.3390/cryst12091185
APA StyleKamanina, N., Toikka, A., & Likhomanova, S. (2022). Novel and Classical Materials Used in the Plane of Polarization of Light Rotation: Liquid Crystal with WS2 Nanotubes. Crystals, 12(9), 1185. https://doi.org/10.3390/cryst12091185