Structural and Optical Characteristics of Flexible Optically Rewritable Electronic Paper
Abstract
:1. Introduction
2. Methodology of Uniform Spacer Distribution
- (a)
- Relative compression of the spacers caused by external pressure on the first of the plates must not exceed the maximum value;
- (b)
- Maximum deflection of the top plate between the spacers must be kept within predetermined limits.
3. Theoretical Model
3.1. Model of Surface-Induced Director Alignment
3.2. Simulation of Optical Performance
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, Z.; Zhan, T.; Wu, S.T. Polarization-independent liquid crystal-based refractive index sensor. J. Soc. Inf. Disp. 2021, 29, 305–310. [Google Scholar] [CrossRef]
- Li, X.; Au, P.T.; Xu, P.; Muravsky, A.; Muravsky, A.; Liu, Z.; Chigrinov, V.; Kwok, H.S. P-153: Flexible Photoaligned Optically Rewritable LC display. In Proceedings of the SID Symposium Digest of Technical Papers, San Francisco, CA, USA, 4–6 June 2006; pp. 783–785. [Google Scholar]
- Park, S.; Wang, G.; Cho, B.; Kim, Y.; Song, S.; Ji, Y.; Yoon, M.-H.; Lee, T. Flexible molecular-scale electronic devices. Nat. Nanotechnol. 2012, 7, 438–442. [Google Scholar] [CrossRef] [PubMed]
- Sivaranjini, B.; Mangaiyarkarasi, R.; Ganesh, V.; Umadevi, S. Vertical alignment of liquid crystals over a functionalized flexible substrate. Sci. Rep. 2018, 8, 8891. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Kim, W.; Lee, J.H.; Kim, Y.M.; Yun, M.H. Understanding the Relationship between User’s Subjective Feeling and the Degree of Side Curvature in Smartphone. Appl. Sci. 2020, 10, 3320. [Google Scholar] [CrossRef]
- Sivaranjini, B.; Ganesh, V.; Umadevi, S. Bent-core liquid crystal-functionalised flexible polymer substrates for liquid crystal alignment. Liq. Cryst. 2020, 47, 838–850. [Google Scholar] [CrossRef]
- Kataoka, M.; Okada, H. In-plane switching liquid crystal cells using patterned printing electrodes and fine groove structures. Liq. Cryst. 2020, 47, 1735–1743. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, J.; Liu, Y.; Shang, J.; Liu, H.; Liu, H.; Gong, X.; Chigrinov, V.; Kwok, H.S. A flexible optically re-writable color liquid crystal display. Appl. Phys. Lett. 2018, 112, 131902. [Google Scholar] [CrossRef]
- Khandelwal, H.; van Heeswijk, E.P.; Schenning, A.P.; Debije, M.G. Paintable temperature-responsive cholesteric liquid crystal reflectors encapsulated on a single flexible polymer substrate. J. Mater. Chem. C 2019, 7, 7395–7398. [Google Scholar] [CrossRef]
- Ishinabe, T.; Fujikake, H. Optical design of flexible liquid crystal displays. In High Quality Liquid Crystal Displays and Smart Devices; Institution of Engineering and Technology: London, UK, 2019; pp. 207–222. [Google Scholar]
- Maruyama, N.; Kumashiro, Y.; Yamamoto, K. Development of cell gap spacer in LCD for ink-jet printing. In Proceedings of the 2008 2nd Electronics System-Integration Technology Conference, Institution of Engineering and Technology, Greenwich, UK, 1–4 September 2008; pp. 985–988. [Google Scholar]
- Chigrinov, V.G.; Kudreyko, A.A. Tunable optical properties for ORW e-paper. Liq. Cryst. 2021, 48, 1073–1077. [Google Scholar] [CrossRef]
- Kudreyko, A.; Chigrinov, V. Optimization of image writer modes for optically rewritable electronic paper. Liq. Cryst. 2022, 4, 436–441. [Google Scholar] [CrossRef]
- Lagerwall, S.T.; Muravski, A.A.; Yakovenko, S.Y.; Konovalov, V.A.; Minko, A.A.; Tsarev, V.P. Pressure-Insensitive Liquid Crystal Cell 2001. U.S. Patent No. 6,184,967, 6 February 2001. [Google Scholar]
- De Gennes, P.-G.; Prost, J. The Physics of Liquid Crystals; Oxford University Press: Oxford, UK, 1993; Volume 83. [Google Scholar]
- Yakovlev, D.A.; Chigrinov, V.G.; Kwok, H.-S. Modeling and Optimization of LCD Optical Performance; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Heikenfeld, J.; Drzaic, P.; Yeo, J.S.; Koch, T. A critical review of the present and future prospects for electronic paper. J. Soc. Inf. Disp. 2011, 19, 129–156. [Google Scholar] [CrossRef]
- Collett, E. Polarized light. Fundamentals and applications. In Optical Engineering; Dekker: New York, NY, USA, 1992. [Google Scholar]
Parameter | Value, Unit | Description |
---|---|---|
K11 | 1.3∙10−6 dyn | Elastic constants |
K22 | 7.1∙10−7 dyn | |
K33 | 1.95∙10−6 dyn | |
15.1 | Parallel permittivity | |
3.8 | Perpendicular permittivity | |
d | 13.64 μm | LC layer thickness |
d1 | 0.01 μm | Photosensitive layer thickness |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kudreyko, A.; Chigrinov, V. Structural and Optical Characteristics of Flexible Optically Rewritable Electronic Paper. Crystals 2022, 12, 1149. https://doi.org/10.3390/cryst12081149
Kudreyko A, Chigrinov V. Structural and Optical Characteristics of Flexible Optically Rewritable Electronic Paper. Crystals. 2022; 12(8):1149. https://doi.org/10.3390/cryst12081149
Chicago/Turabian StyleKudreyko, Aleksey, and Vladimir Chigrinov. 2022. "Structural and Optical Characteristics of Flexible Optically Rewritable Electronic Paper" Crystals 12, no. 8: 1149. https://doi.org/10.3390/cryst12081149
APA StyleKudreyko, A., & Chigrinov, V. (2022). Structural and Optical Characteristics of Flexible Optically Rewritable Electronic Paper. Crystals, 12(8), 1149. https://doi.org/10.3390/cryst12081149