A Mesoporous Silica Nanoparticle-Doped Photo-Alignment Layer and Liquid Crystal Layer for Optimizing the Rewriting Speed and the Response Time of Optically Driving Liquid Crystal Displays
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of MSNs
2.3. Preparation of ODLCD
2.4. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Gennes, P.G.; Prost, J. The Physics of Liquid Crystals; Oxford University Press: New York, NY, USA, 1993. [Google Scholar]
- Sang, J.; Zhang, J.; Feng, H.; Sun, J.; Shang, J.; Zhang, Y.; Zhao, S.; Neyts, K.; Chigrinov, V. Flexible and Transferable Silver Nanowire Liquid Crystal Polymer Film Obtained via Photo-Alignment Programming. Adv. Opt. Mater. 2022, 2200950. [Google Scholar] [CrossRef]
- Eskalen, H.; Özğan, Ş.; ALVER, Ü.; Kerli, S. Electro-Optical Properties of Liquid Crystals Composite with Zinc Oxide Nanoparticles. Acta Phys. Pol. A 2015, 127, 756–760. [Google Scholar] [CrossRef]
- Tejaswi, M.; Pardhasaradhi, P.; Madhav, B.; Rao, M.; Krishna Mohan, N.; Manepalli, R. Spectroscopic studies on liquid crystalline n-hexyloxy-cyanobiphenyl with dispersed citrate-capped gold nanoparticles in visible region. Liq. Cryst. 2020, 47, 918–938. [Google Scholar] [CrossRef]
- Karabuğa, H.; Mert, H.H.; Karanlık, G.; Ocak, H. Synthesis and Characterization of Bent-Core Liquid Crystal/Modified γ-Al2O3 Nanocomposites. Chem. Select 2019, 4, 8983–8988. [Google Scholar]
- Eskalen, H. Influence of carbon quantum dots on electro–optical performance of nematic liquid crystal. Appl. Phys. A 2020, 126, 708. [Google Scholar] [CrossRef]
- Sang, J.; Zhu, W.; Feng, Y.; Liu, Y.; Shang, J.; Sun, J.; Guo, L.; Zhang, Y.; Zhao, S.; Chigrinov, V. Smart Windows with a VO2 Thin Film as a Conductive Layer for Efficient and Independent Dual-Band Modulation. ACS Appl. Electron. Mater. 2021, 3, 4882–4890. [Google Scholar] [CrossRef]
- Olifierczuk, M.; Kowerdziej, R.; Jaroszewicz, L.; Czerwinski, M.; Parka, J. Numerical analysis of THz metamaterial with high birefringence liquid crystal. Liq. Cryst. 2012, 39, 739–744. [Google Scholar] [CrossRef]
- Polat, E.; Reese, R.; Jost, M.; Schuster, C.; Nickel, M.; Jakoby, R.; Maune, H. Tunable liquid crystal filter in nonradiative dielectric waveguide technology at 60 GHz. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 44–46. [Google Scholar] [CrossRef]
- Jakoby, R.; Gaebler, A.; Weickhmann, C. Microwave liquid crystal enabling technology for electronically steerable antennas in SATCOM and 5G millimeter-wave systems. Crystals 2020, 10, 514. [Google Scholar] [CrossRef]
- Liu, Y.; Sang, J.; Liu, H.; Xu, H.; Zhao, S.; Sun, J.; Lee, J.H.; Jeong, H.-C.; Seo, D.-S. Decreasing the residual DC voltage by neutralizing the charged mobile ions in liquid crystals. Crystals 2019, 9, 181. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Wei, B.Y.; Hu, W.; Lu, Y.Q. Liquid-crystal-mediated geometric phase: From transmissive to broadband reflective planar optics. Adv. Mater. 2020, 32, 1903665. [Google Scholar] [CrossRef] [PubMed]
- Chigrinov, V.G. Photoaligning and photopatterning—A new challenge in liquid crystal photonics. Crystals 2013, 3, 149–162. [Google Scholar] [CrossRef] [Green Version]
- Murauski, A.; Chigrinov, V.G.; Li, X.; Kwok, H.S. Optically rewriteable LC display with a high contrast and long life time. In IDW/AD’05-Proceedings of the 12th International Display Workshops in Conjunction with Asia Display 2005; The Institute of Image Information and Television Engineers: Tokyo, Japan, 2005; p. 131. [Google Scholar]
- Chigrinov, V.G.; Belyaev, V.V.; Kozenkov, V.M.; Chausov, D.N.; Margaryan, H.L.; Hakobyan, N.H.; Tabiryan, N.V. Azodyes for liquid crystal photoalignment in displays and diffraction optical elements. In Proceedings of the Emerging Liquid Crystal Technologies XVII, SPIE, San Francisco, CA, USA, 26 July 2022; pp. 26–36. [Google Scholar]
- Sang, J.; Han, L.; Liu, M.; Shang, J.; Sun, J.; Guo, L.; Ge, D.; Zhang, Y.; Zhao, S.; Chigrinov, V.G. Dynamic orientation of silver nanowires via photoalignment for liquid crystal display technology. ACS Appl. Nano Mater. 2021, 4, 12937–12942. [Google Scholar] [CrossRef]
- Xiong, J.; Yang, Q.; Li, Y.; Wu, S.-T. Holo-imprinting polarization optics with a reflective liquid crystal hologram template. Light. Sci. Appl. 2022, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Srivastava, A.K.; Zhang, W.; Wang, L.; Chigrinov, V.G.; Kwok, H.S. Optically rewritable 3D liquid crystal displays. Opt. Lett. 2014, 39, 6209–6212. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, J.; Liu, Y.; Shang, J.; Liu, H.; Liu, H.; Gong, X.; Chigrinov, V.; Kowk, H.S. A flexible optically re-writable color liquid crystal display. Appl. Phys. Lett. 2018, 112, 131902. [Google Scholar] [CrossRef]
- Du, T.; Fan, F.; Tam, A.M.W.; Sun, J.; Chigrinov, V.G.; Sing Kwok, H. Complex nanoscale-ordered liquid crystal polymer film for high transmittance holographic polarizer. Adv. Mater. 2015, 27, 7191–7195. [Google Scholar] [CrossRef]
- Sun, J.; Ren, L.; Deng, K.; Wang, T.; Guo, Q.; Sang, J.; Liu, Y.; Liu, H.; Shang, J.; Chigrinov, V. Greyscale generation for optically driving liquid crystal display. Liq. Cryst. 2019, 46, 1340–1344. [Google Scholar] [CrossRef]
- Wang, L.; Sun, J.; Liu, H.; Chigrinov, V.; Kwok, H.S. Increasing the rewriting speed of ORW e-paper by electric field. Liq. Cryst. 2018, 45, 553–560. [Google Scholar] [CrossRef]
- Sun, J.; Liu, Y.; Liu, H.; Gong, X.; Chigrinov, V.G. Increasing rewriting speed of optically driving liquid crystal display by process optimisation. Liq. Cryst. 2019, 46, 151–157. [Google Scholar] [CrossRef]
- Chigrinov, V.; Sun, J.; Kuznetsov, M.M.; Belyaev, V.; Chausov, D. The Effect of Operating Temperature on the Response Time of Optically Driven Liquid Crystal Displays. Crystals 2020, 10, 626. [Google Scholar] [CrossRef]
- Acharya, S.; Kundu, S.; Hill, J.P.; Richards, G.J.; Ariga, K. Nanorod-Driven Orientational Control of Liquid Crystal for Polarization-Tailored Electro-Optic Devices. Adv. Mater. 2009, 21, 989–993. [Google Scholar] [CrossRef]
- Kundu, S.; Hill, J.P.; Richards, G.J.; Ariga, K.; Khan, A.H.; Thupakula, U.; Acharya, S. Ultranarrow PbS nanorod-nematic liquid crystal blend for enhanced electro-optic properties. ACS Appl. Mater. Interfaces 2010, 2, 2759–2766. [Google Scholar] [CrossRef]
- Lee, W.-K.; Hwang, S.J.; Cho, M.-J.; Park, H.-G.; Han, J.-W.; Song, S.; Jang, J.H.; Seo, D.-S. CIS–ZnS quantum dots for self-aligned liquid crystal molecules with superior electro-optic properties. Nanoscale 2013, 5, 193–199. [Google Scholar] [CrossRef] [PubMed]
- SJ, S.; Gupta, R.; Kumar, S.; Manjuladevi, V. Enhanced electro-optical response of nematic liquid crystal doped with functionalised silver nanoparticles in twisted nematic configuration. Liq. Cryst. 2020, 47, 1678–1690. [Google Scholar]
- Tang, F.; Li, L.; Chen, D. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. Adv. Mater. 2012, 24, 1504–1534. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.-H.; Mou, C.-Y.; Lin, H.-P. Synthesis of mesoporous silica nanoparticles. Chem. Soc. Rev. 2013, 42, 3862–3875. [Google Scholar] [CrossRef] [PubMed]
- Knežević, N.Ž. Core/shell magnetic mesoporous silica nanoparticles with radially oriented wide mesopores. Process. Appl. Ceram. 2014, 8, 109–112. [Google Scholar] [CrossRef] [Green Version]
- Knežević, N.Z.; Ilić, N.A.; Ðokić, V.; Petrović, R.; Janaćković, D.O.E. Mesoporous silica and organosilica nanomaterials as UV-blocking agents. ACS Appl. Mater. Interfaces 2018, 10, 20231–20236. [Google Scholar] [CrossRef] [PubMed]
- Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62–69. [Google Scholar] [CrossRef]
- Ma, Y.; Xin, S.J.; Liu, X.; Liu, Y.; Sun, J.; Wang, X.; Guo, Q.; Chigrinov, V.G. Colour generation for optically driving liquid crystal display. Liq. Cryst. 2020, 47, 1729–1734. [Google Scholar] [CrossRef]
- Chen, P.; Ma, L.L.; Duan, W.; Chen, J.; Ge, S.J.; Zhu, Z.H.; Tang, M.J.; Xu, R.; Gao, W.; Li, T. Digitalizing self-assembled chiral superstructures for optical vortex processing. Adv. Mater. 2018, 30, 1705865. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.; Chen, P.; Shen, Z.; Sun, W.; Wang, X.; Hu, W.; Zhang, Y.; Lu, Y. Terahertz vortex beam generator based on a photopatterned large birefringence liquid crystal. Opt. Express 2017, 25, 12349–12356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chigrinov, V.; Pikin, S.; Verevochnikov, A.; Kozenkov, V.; Khazimullin, M.; Ho, J.; Huang, D.D.; Kwok, H.-S. Diffusion model of photoaligning in azo-dye layers. Phys. Rev. E 2004, 69, 061713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Zhang, Y.; Luo, W.; Elzatahry, A.A.; Cheng, X.; Alghamdi, A.; Abdullah, A.M.; Deng, Y.; Zhao, D. Synthesis of ordered mesoporous silica with tunable morphologies and pore sizes via a nonpolar solvent-assisted stober method. Chem. Mater. 2016, 28, 2356–2362. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sang, J.; Lai, Y.; Sun, J.; Shang, J.; Zhao, S. A Mesoporous Silica Nanoparticle-Doped Photo-Alignment Layer and Liquid Crystal Layer for Optimizing the Rewriting Speed and the Response Time of Optically Driving Liquid Crystal Displays. Crystals 2022, 12, 1088. https://doi.org/10.3390/cryst12081088
Sang J, Lai Y, Sun J, Shang J, Zhao S. A Mesoporous Silica Nanoparticle-Doped Photo-Alignment Layer and Liquid Crystal Layer for Optimizing the Rewriting Speed and the Response Time of Optically Driving Liquid Crystal Displays. Crystals. 2022; 12(8):1088. https://doi.org/10.3390/cryst12081088
Chicago/Turabian StyleSang, Jingxin, Yujian Lai, Jiatong Sun, Jianhua Shang, and Shuguang Zhao. 2022. "A Mesoporous Silica Nanoparticle-Doped Photo-Alignment Layer and Liquid Crystal Layer for Optimizing the Rewriting Speed and the Response Time of Optically Driving Liquid Crystal Displays" Crystals 12, no. 8: 1088. https://doi.org/10.3390/cryst12081088
APA StyleSang, J., Lai, Y., Sun, J., Shang, J., & Zhao, S. (2022). A Mesoporous Silica Nanoparticle-Doped Photo-Alignment Layer and Liquid Crystal Layer for Optimizing the Rewriting Speed and the Response Time of Optically Driving Liquid Crystal Displays. Crystals, 12(8), 1088. https://doi.org/10.3390/cryst12081088