Numerical Analysis of Gas Flow Instabilities in Simplified Vertical HVPE GaN Reactors
Abstract
:1. Introduction
2. Modelling of Gas Flow in an HVPE Reactor
2.1. The Reactor Geometry
2.2. The Fluid Dynamical System
2.3. Boundary Conditions
2.4. Numerical Scheme
3. A Connection between Buoancy and Baroclinicity
4. Numerical Experiments
4.1. Variation of NH in ORL
4.2. Variation of H in IRL
4.3. Analysis of the Instabilities for the Down-Flow Reactor
4.4. Analysis of the Instabilities for the Up-Flow Reactor
5. Consequences for Gas Inlet Designs and Reactor Scaling
5.1. Towards Stable Gas Inlet Configurations
5.2. Scaling of Vertical HVPE Reactors
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HVPE | Hydride vapor phase epitaxy |
IRL | Inner run line |
SL | Separation line |
ORL | Outer run line |
SWP | Side wall purge |
CFD | Computational fluid dynamics |
Appendix A. Material Data
GaCl |
GaCl |
GaCl |
GaCl |
Appendix B. Low Mach Number Scaling of the Pressure
References
- Bockowski, M.; Iwinska, M.; Amilusik, M.; Fijalkowski, M.; Lucznik, B.; Sochacki, T. Challenges and future perspectives in HVPE-GaN growth on ammonothermal GaN seeds. Semicond. Sci. Technol. 2016, 31, 46–129. [Google Scholar] [CrossRef]
- Ehrentraut, D.; Meissner, E.; Bockowski, M. Technology of Gallium Nitride Crystal Growth; Springer Series in Materials Science, Band 133; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Kucharski, R.; Sochacki, T.; Lucznik, B.; Bockowski, M. Growth of bulk GaN crystals. J. Appl. Phys. 2020, 128, 050902. [Google Scholar] [CrossRef]
- Lukin, G.; Meissner, E.; Friedrich, J.; Habel, F.; Leibiger, G. Stress evolution in thick GaN layers grown by HVPE. J. Cryst. Growth 2020, 550, 125887. [Google Scholar] [CrossRef]
- Amilusik, M.; Wlodarczyk, D.; Suchocki, A.; Bockowski, M. Micro-Raman studies of strain in bulk GaN crystals grown by hydride vapor phase epitaxy on ammonothermal GaN seeds. Jpn. J. Appl. Phys. 2019, 58, SCCB32. [Google Scholar] [CrossRef]
- Hemmingsson, C.; Monemar, B.; Kumagai, Y.; Koukitu, A. Growth of III-Nitrides with Halide Vapor Phase Epitaxy (HVPE). In Springer Handbook of Crystal Growth; Dhanaraj, G., Byrappa, K., Prasad, V., Dudley, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Holstein, W.L. Design and modeling of chemical vapor deposition reactors. Prog. Cryst. Growth Charact. Mater. 1992, 24, 111–211. [Google Scholar] [CrossRef]
- Jensen, K.F.; Einset, E.O.; Fotiadis, D.I. Flow Phenomena in Chemical Vapor Deposition of Thin Films. Annu. Rev. Fluid Mech. 1991, 23, 197–232. [Google Scholar] [CrossRef]
- Kangawa, Y.; Kusaba, A.; Kempisty, P.; Shiraishi, K.; Nitta, S.; Amano, H. Progress in Modeling Compound Semiconductor Epitaxy: Unintentional Doping in GaN MOVPE. Cryst. Growth Des. 2021, 21, 1878–1890. [Google Scholar] [CrossRef]
- Li, J.; Wu, Z.; Xu, Y.; Pei, Y.; Wang, G. Stability Analysis of Multi Process Parameters for Metal-Organic Chemical Vapor Deposition Reaction Cavity. Molecules 2019, 24, 876. [Google Scholar] [CrossRef]
- Gakis, G.; Koronaki, E.; Boudouvis, A. Numerical investigation of multiple stationary and time-periodic flow regimes in vertical rotating disc CVD reactors. J. Cryst. Growth 2015, 432, 152–159. [Google Scholar] [CrossRef]
- Parikh, R.; Adomaitis, R. An overview of gallium nitride growth chemistry and its effect on reactor design: Application to a planetary radial-flow CVD system. J. Cryst. Growth 2006, 286, 259–278. [Google Scholar] [CrossRef]
- Meng, J.; Jaluria, Y. Numerical simulation of GaN growth in a MOCVD process. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Denver, CO, USA, 11–17 November 2011; Volume 11. [Google Scholar] [CrossRef]
- Niedzielski, P.; Raj, E.; Lisik, Z.; Plesiewicz, J.; Grzanka, E.; Czernecki, R.; Leszczynski, M. Numerical Analysis of the High Pressure MOVPE Upside-Down Reactor for GaN Growth. Electronics 2021, 10, 1503. [Google Scholar] [CrossRef]
- Kakanakova-Georgieva, A.; Gueorguiev, G.K.; Sangiovanni, D.G.; Suwannaharn, N.; Ivanov, I.G.; Cora, I.; Pécz, B.; Nicotra, G.; Giannazzo, F. Nanoscale phenomena ruling deposition and intercalation of AlN at the graphene/SiC interface. Nanoscale 2020, 12, 19470–19476. [Google Scholar] [CrossRef]
- Kakanakova-Georgieva, A.; Ivanov, I.G.; Suwannaharn, N.; Hsu, C.W.; Cora, I.; Pécz, B.; Giannazzo, F.; Sangiovanni, D.G.; Gueorguiev, G.K. MOCVD of AlN on epitaxial graphene at extreme temperatures. CrystEngComm 2021, 23, 385–390. [Google Scholar] [CrossRef]
- Segal, A.; Kondratyev, A.; Karpov, S.; Karpov, S.; Martin, D.; Wagner, V.; Ilegems, M. Surface chemistry and transport effects in GaN hydride vapor phase epitaxy. J. Cryst. Growth 2004, 270, 384–395. [Google Scholar] [CrossRef]
- Dam, C.; Hageman, P. Carrier gas and position effects on GaN growth in a horizontal HVPE reactor: An experimental and numerical study. J. Cryst. Growth 2005, 285, 31–40. [Google Scholar] [CrossRef]
- Richter, E.; Hennig, C.; Weyers, M.; Habel, F.; Tsay, J.D.; Liu, W.; Brukner, P.; Scholz, F.; Makarov, Y.; Segal, A.; et al. Reactor and growth process optimization for growth of thick GaN layers on sapphire substrates by HVPE. J. Cryst. Growth 2005, 27715. [Google Scholar] [CrossRef]
- Kempisty, P.; Łucznik, B.; Pastuszka, B.; Grzegory, I.; Bockowski, M.; Krukowski, S.; Porowski, S. CFD and reaction computational analysis of the growth of GaN by HVPE method. J. Cryst. Growth 2006, 296, 31–42. [Google Scholar] [CrossRef]
- Hemmingsson, C.; Pozina, G.; Heuken, M.; Schineller, B.; Monemar, B. Modeling, optimization, and growth of GaN in a vertical halide vapor-phase epitaxy bulk reactor. J. Cryst. Growth 2008, 310, 906–910. [Google Scholar] [CrossRef]
- Łukasz, S.; Lapkin, A.; Stepanov, S.; Wang, W. CFD optimisation of up-flow vertical HVPE reactor for GaN growth. J. Cryst. Growth 2008, 310, 3358–3365. [Google Scholar] [CrossRef]
- Han, X.; Hur, M.J.; Lee, J.H.; Lee, Y.j.; Oh, C.s.; Yi, K.W. Numerical simulation of the gallium nitride thin film layer grown on 6-inch wafer by commercial multi-wafer hydride vapor phase epitaxy. J. Cryst. Growth 2014, 406, 53–58. [Google Scholar] [CrossRef]
- Bird, R.; Lightfoot, E.; Stewart, W. Transport Phenomena; J. Wiley: Hoboken, NJ, USA, 2002. [Google Scholar]
- Eucken, A. On the thermal conductivity, the specific heat and the viscosity of gases. Phys. Z. 1913, 14, 324. [Google Scholar]
- Weller, H.; Tabor, G.; Jasak, H.; Fureby, C. A Tensorial Approach to Computational Continuum Mechanics Using Object Orientated Techniques. Comput. Phys. 1998, 12, 620–631. [Google Scholar] [CrossRef]
- Marshall, J.; Plumb, R.A. Atmosphere, Ocean and Climate Dynamics, Volume 2: An Introductory Text (International Geophysics); Academic Press: Cambridge, MA, USA, 2007; Volume 93. [Google Scholar]
- Roberts, M.; Jacobs, J. The effects of forced small-wavelength, finite-bandwidth initial perturbations and miscibility on the turbulent Rayleigh–Taylor instability. J. Fluid Mech. 2016, 787, 50–83. [Google Scholar] [CrossRef]
- Dam, C.; Bohnen, T.; Kleijn, C.; Hageman, P.; Larsen, P. Scaling up a horizontal HVPE reactor. Surf. Coatings Technol. 2007, 201, 8878–8883. [Google Scholar] [CrossRef]
- Wu, J.; Zhao, L.; Wen, D.; Xu, K.; Yang, Z.; Zhang, G.; Li, H.; Zuo, R. New design of nozzle structures and its effect on the surface and crystal qualities of thick GaN using a horizontal HVPE reactor. Appl. Surf. Sci. 2009, 255, 5926–5931. [Google Scholar] [CrossRef]
- Guillard, H.; Viozat, C. On the behaviour of upwind schemes in the low Mach number limit. Comput. Fluids 1999, 28, 63–86. [Google Scholar] [CrossRef]
Reference Quantity | |||||
---|---|---|---|---|---|
value | m | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zenk, M.; Lukin, G.; Bastin, D.; Doradziński, R.; Beyer, F.C.; Meissner, E.; Friedrich, J. Numerical Analysis of Gas Flow Instabilities in Simplified Vertical HVPE GaN Reactors. Crystals 2022, 12, 1248. https://doi.org/10.3390/cryst12091248
Zenk M, Lukin G, Bastin D, Doradziński R, Beyer FC, Meissner E, Friedrich J. Numerical Analysis of Gas Flow Instabilities in Simplified Vertical HVPE GaN Reactors. Crystals. 2022; 12(9):1248. https://doi.org/10.3390/cryst12091248
Chicago/Turabian StyleZenk, Markus, Gleb Lukin, Dirk Bastin, Roman Doradziński, Franziska C. Beyer, Elke Meissner, and Jochen Friedrich. 2022. "Numerical Analysis of Gas Flow Instabilities in Simplified Vertical HVPE GaN Reactors" Crystals 12, no. 9: 1248. https://doi.org/10.3390/cryst12091248
APA StyleZenk, M., Lukin, G., Bastin, D., Doradziński, R., Beyer, F. C., Meissner, E., & Friedrich, J. (2022). Numerical Analysis of Gas Flow Instabilities in Simplified Vertical HVPE GaN Reactors. Crystals, 12(9), 1248. https://doi.org/10.3390/cryst12091248