Nanomechanical Characterization of High-Velocity Oxygen-Fuel NiCoCrAlYCe Coating
Abstract
:1. Introduction
2. Experimental
2.1. Material Preparation
2.2. Characterization Technology
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ghadami, F.; Aghdam, A.S.R.; Ghadami, S. Microstructural characteristics and oxidation behavior of the modified MCrAlX coatings: A critical review. Vacuum 2020, 185, 109980. [Google Scholar] [CrossRef]
- Padture, N.P.; Gell, M.; Jordan, E.H. Thermal Barrier Coatings for Gas-Turbine Engine Applications. Science 2002, 296, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhao, X.; Xiao, P. Effect of surface curvature on oxidation of a MCrAlY coating. Corros. Sci. 2019, 163, 108256. [Google Scholar] [CrossRef]
- Jackson, G.A.; Sun, W.; McCartney, D.G. The influence of microstructure on the ductile to brittle transition and fracture be-haviour of HVOF NiCoCrAlY coatings determined via small punch tensile testing. Mater. Sci. Eng. A 2019, 754, 479–490. [Google Scholar] [CrossRef]
- Salam, S.; Hou, P.; Zhang, Y.-D.; Wang, H.-F.; Zhang, C.; Yang, Z.-G. Compositional effects on the high-temperature oxidation lifetime of MCrAlY type coating alloys. Corros. Sci. 2015, 95, 143–151. [Google Scholar] [CrossRef]
- Meng, G.-H.; Liu, H.; Liu, M.-J.; Xu, T.; Yang, G.-J.; Li, C.-X.; Li, C.-J. Highly oxidation resistant MCrAlY bond coats prepared by heat treatment under low oxygen content. Surf. Coat. Technol. 2019, 368, 192–201. [Google Scholar] [CrossRef]
- Xie, S.; Lin, S.; Shi, Q.; Wang, W.; Song, C.; Xu, W.; Dai, M. A study on the mechanical and thermal shock properties of MCrAlY coating prepared by arc ion plating. Surf. Coat. Technol. 2021, 413, 127092. [Google Scholar] [CrossRef]
- Li, Z.; Qian, S.; Wang, W. Characterization and oxidation behavior of NiCoCrAlY coating fabricated by electrophoretic deposition and vacuum heat treatment. Appl. Surf. Sci. 2010, 257, 4616–4620. [Google Scholar] [CrossRef]
- Meng, G.-H.; Liu, H.; Liu, M.-J.; Xu, T.; Yang, G.-J.; Li, C.-X.; Li, C.-J. Large-grain α-Al2O3 enabling ultra-high oxidation-resistant MCrAlY bond coats by surface pre-agglomeration treatment. Corros. Sci. 2019, 163, 108275. [Google Scholar] [CrossRef]
- Zakeri, A.; Bahmani, E.; Aghdam, A.S.R. Impact of MCrAlY feedstock powder modification by high-energy ball milling on the microstructure and high-temperature oxidation performance of HVOF-sprayed coatings. Surf. Coat. Technol. 2020, 395, 125935. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Memon, H.; Fu, Y.; Barman, T.; Choi, K.-S.; Hou, X. Hydrophobic/icephobic coatings based on thermal sprayed metallic layers with subsequent surface functionalization. Surf. Coat. Technol. 2018, 357, 267–272. [Google Scholar] [CrossRef]
- Han, Y.J.; Zhu, Z.Y.; Zhang, B.S.; Chu, Y.J.; Zhang, Y.; Fan, J.K. Effects of process parameters of vacuum preoxidation on themicrostructural evolution of CoCrAlY coating deposited by HVOF. J. Alloys Compd. 2018, 735, 547–559. [Google Scholar] [CrossRef]
- Mora-García, A.; Ruiz-Luna, H.; Mosbacher, M.; Popp, R.; Schulz, U.; Glatzel, U.; Muñoz-Saldaña, J. Microstructural analysis of Ta-containing NiCoCrAlY bond coats deposited by HVOF on different Ni-based superalloys. Surf. Coat. Technol. 2018, 354, 214–225. [Google Scholar] [CrossRef]
- Sun, X.; Chen, S.; Wang, Y.; Pan, Z.; Wang, L. Mechanical Properties and Thermal Shock Resistance of HVOF Sprayed NiCrAlY Coatings Without and With Nano Ceria. J. Therm. Spray Technol. 2012, 21, 818–824. [Google Scholar] [CrossRef]
- Karaoglanlia, A.C.; Ozgurluka, Y.; Doleker, K.M. Comparison of microstructure and oxidation behavior of CoNiCrAlY coatings produced by APS, SSAPS, D-gun, HVOF and CGDS techniques. Vacuum 2020, 180, 109609. [Google Scholar] [CrossRef]
- Srivastava, M.; Jadhavb, M.S.; Chethana; Chakradhara, R.P.S.; Singh, S. Investigation of HVOF sprayed novel Al1.4Co2.1Cr0.7Ni2.45Si0.2Ti0.14HEA coating as bond coat material in TBC system. J. Alloys Compd. 2022, 924, 166388. [Google Scholar] [CrossRef]
- Praveen, A.S.; Arjunan, A. Parametric optimisation of high-velocity oxy-fuel nickel-chromium-silicon-boron and alumini-um-oxide coating to improve erosion wear resistance. Mater. Res. Express 2019, 6, 096560. [Google Scholar] [CrossRef]
- Rajendran, P.R.; Duraisamy, T.; Seshadri, R.C.; Mohankumar, A.; Ranganathan, S.; Balachandran, G.; Murugan, K.; Renjith, L. Optimisation of HVOF Spray Process Parameters to Achieve Minimum Porosity and Maximum Hardness in WC-10Ni-5Cr Coatings. Coat. 2022, 12, 339. [Google Scholar] [CrossRef]
- Sacriste, D.; Goubot, N.; Dhers, J.; Ducos, M.; Vardelle, A. An Evaluation of the Electric Arc Spray and (HPPS) Processes for the Manufacturing of High Power Plasma Spraying MCrAlY Coatings. J. Therm. Spray Technol. 2001, 10, 352–358. [Google Scholar] [CrossRef]
- Feizabadi, A.; Doolabi, M.S.; Sadrnezhaad, S.; Rezaei, M. Cyclic oxidation characteristics of HVOF thermal-sprayed NiCoCrAlY and CoNiCrAlY coatings at 1000 °C. J. Alloys Compd. 2018, 746, 509–519. [Google Scholar] [CrossRef]
- Zakeri, A.; Bahmani, E.; Aghdam, A.S.R.; Saeedi, B.; Bai, M. A study on the effect of nano-CeO2 dispersion on the characteristics of thermally-grown oxide (TGO) formed on NiCoCrAlY powders and coatings during isothermal oxidation. J. Alloys Compd. 2020, 835, 155319. [Google Scholar] [CrossRef]
- Yu, M.; Cui, T.; Zhou, D.; Li, R.; Pu, J.; Li, C. Improved oxidation and hot corrosion resistance of the NiSiAlY alloy at 750 ℃. Mater. Today Commun. 2021, 29, 102939. [Google Scholar] [CrossRef]
- Yang, Y.F.; Yao, H.R.; Bao, Z.B.; Ren, P.; Li, W. Modification of NiCoCrAlY with Pt: Part I. Effect of Pt depositing location and cyclic oxidetion performance. J. Mater. Sci. Technol. 2019, 35, 341–349. [Google Scholar] [CrossRef]
- Yu, C.T.; Liu, H.; Jiang, C.Y.; Bao, Z.B.; Zhu, S.L.; Wang, F.H. Modification of NiCoCrAlY with Pt: Part II. Application in TBC with pure metastable tetragonal (t’) phase YSZ and thermal cycling behavior. J. Mater. Sci. Technol. 2019, 35, 350–359. [Google Scholar] [CrossRef]
- Zhou, F.; Zhang, Z.; Liu, S.; Wang, L.; Jia, J.; Wang, Y.; Gong, X.; Gou, J.; Deng, C.; Liu, M. Effect of heat treatment and synergistic rare-earth modified NiCrAlY on bonding strength of nanostructured 8YSZ coatings. Appl. Surf. Sci. 2019, 480, 636–645. [Google Scholar] [CrossRef]
- Zhou, F.; Wang, Y.; Liu, M.; Deng, C.; Zhang, X.; Wang, Y. Acoustic emission monitoring of the tensile behavior of a HVOF-sprayed NiCoCrAlYCe coating. Appl. Surf. Sci. 2019, 504, 144400. [Google Scholar] [CrossRef]
- Zhou, F.; Xu, L.; Deng, C.; Song, J.; Wang, Y.; Liu, M. Nanomechanical characterization of nanostructured La2(Zr0.75Ce0.25)2O7 thermal barrier coatings by nanoindentation. Appl. Surf. Sci. 2019, 505, 144585. [Google Scholar] [CrossRef]
- Li, C.; Ding, J.; Zhu, F.; Yin, J.; Wang, Z.; Zhao, Y.; Kou, S. Indentation creep behavior of Fe-based amorphous coatings fabricated by high velocity Oxy-fuel. J. Non-Cryst. Solids 2018, 503–504, 62–68. [Google Scholar] [CrossRef]
- Babu, P.S.; Jha, R.; Guzman, M.; Sundararajan, G.; Agarwal, A. Indentation creep behavior of cold sprayed aluminum amor-phous/nano-crystalline coatings. Mater. Sci. Eng. A 2016, 658, 415–421. [Google Scholar] [CrossRef]
- Dean, J.; Campbell, J.; Aldrich-Smith, G.; Clyne, T. A critical assessment of the “stable indenter velocity” method for obtaining the creep stress exponent from indentation data. Acta Mater. 2014, 80, 56–66. [Google Scholar] [CrossRef] [Green Version]
Flow rate of kerosene (L/h) | 18.9 |
Flow rate of N2 (L/min) | 10.4 |
Flow rate of O2 (L/min) | 873.2 |
Feeding rate (g/min) | 70 |
Spray distance (mm) | 360 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, F.; Guo, D.; Xu, B.; Wang, Y.; Wang, Y. Nanomechanical Characterization of High-Velocity Oxygen-Fuel NiCoCrAlYCe Coating. Crystals 2022, 12, 1246. https://doi.org/10.3390/cryst12091246
Zhou F, Guo D, Xu B, Wang Y, Wang Y. Nanomechanical Characterization of High-Velocity Oxygen-Fuel NiCoCrAlYCe Coating. Crystals. 2022; 12(9):1246. https://doi.org/10.3390/cryst12091246
Chicago/Turabian StyleZhou, Feifei, Donghui Guo, Baosheng Xu, Yiguang Wang, and You Wang. 2022. "Nanomechanical Characterization of High-Velocity Oxygen-Fuel NiCoCrAlYCe Coating" Crystals 12, no. 9: 1246. https://doi.org/10.3390/cryst12091246
APA StyleZhou, F., Guo, D., Xu, B., Wang, Y., & Wang, Y. (2022). Nanomechanical Characterization of High-Velocity Oxygen-Fuel NiCoCrAlYCe Coating. Crystals, 12(9), 1246. https://doi.org/10.3390/cryst12091246