Effect of Gate Dielectric Material on the Electrical Properties of MoSe2-Based Metal–Insulator–Semiconductor Field-Effect Transistor
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Electrical Characterization of All Samples
3.2. Morphological Characterization
3.3. Electrical and Optoelectronic Characterization
3.4. Electrical Characterizations of All Samples
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zheng, L.; Wang, X.; Jiang, H.; Xu, M.; Huang, W.; Liu, Z. Recent progress of flexible electronics by 2D transition metal dichalcogenides. Nano Res. 2022, 15, 2413–2432. [Google Scholar] [CrossRef]
- Zhao, L.; Shang, Q.; Li, M.; Liang, Y.; Li, C.; Zhang, Q. Strong exciton-photon interaction and lasing of two-dimensional transition metal dichalcogenide semiconductors. Nano Res. 2021, 14, 1937–1954. [Google Scholar] [CrossRef]
- Wang, L.; Xu, D.; Jiang, L.; Gao, J.; Tang, Z.; Xu, Y.; Chen, X.; Zhang, H. Transition metal dichalcogenides for sensing and oncotherapy: Status, challenges, and perspective. Adv. Funct. Mater. 2021, 31, 2004408. [Google Scholar] [CrossRef]
- Imani Yengejeh, S.; Wen, W.; Wang, Y. Mechanical properties of lateral transition metal dichalcogenide heterostructures. Front. Phys. 2021, 16, 13502. [Google Scholar] [CrossRef]
- Wu, M.; Xiao, Y.; Zeng, Y.; Zhou, Y.; Zeng, X.; Zhang, L.; Liao, W. Synthesis of two-dimensional transition metal dichalcogenides for electronics and optoelectronics. InfoMat 2021, 3, 362–396. [Google Scholar] [CrossRef]
- Saha, J.K.; Chakma, N.; Hasan, M. Impact of channel length, gate insulator thickness, gate insulator material, and temperature on the performance of nanoscale FETs. J. Comput. Electron. 2018, 17, 1521–1527. [Google Scholar] [CrossRef]
- Su, S.K.; Chuu, C.P.; Li, M.Y.; Cheng, C.C.; Wong, H.S.P.; Li, L.J. Layered semiconducting 2D materials for future transistor applications. Small Struct. 2021, 2, 2000103. [Google Scholar] [CrossRef]
- Cassabois, G.; Valvin, P.; Gil, B. Hexagonal boron nitride is an indirect bandgap semiconductor. Nat. Photonics 2016, 10, 262–266. [Google Scholar] [CrossRef]
- Sasama, Y.; Kageura, T.; Imura, M.; Watanabe, K.; Taniguchi, T.; Uchihashi, T.; Takahide, Y. High-mobility p-channel wide-bandgap transistors based on hydrogen-terminated diamond/hexagonal boron nitride heterostructures. Nat. Electron. 2022, 5, 37–44. [Google Scholar] [CrossRef]
- Abderrahmane, A.; Ko, P.J.; Jung, P.G.; Kim, N.H.; Sandhu, A. Optoelectronic characterizations of two-dimensional h-BN/MoSe2 heterostructures based photodetector. Sci. Adv. Mater. 2018, 10, 627–631. [Google Scholar] [CrossRef]
- Memaran, S. Lateral PN Junctions Based on 2-D Materials. Ph.D. Thesis, College of Arts and Sciences Florida State University, Tallahassee, FL, USA, 2018; pp. 18–24. [Google Scholar]
- Houssat, M.; Villeneuve-Faure, C.; Lahoud Dignat, N.; Locatelli, M.L.; Cambronne, J.P. Temperature Influence on PI/Si3N4 Nanocomposite Dielectric Properties: A Multiscale Approach. Polymers 2021, 13, 1936. [Google Scholar] [CrossRef]
- Xia, Y.; Li, G.; Jiang, B.; Yang, Z.; Liu, X.; Xiao, X.; Flandre, D.; Wang, C.; Liu, Y.; Liao, L. Exploring and suppressing the kink effect of black phosphorus field-effect transistors operating in the saturation regime. Nanoscale 2019, 11, 10420–10428. [Google Scholar] [CrossRef]
- Meric, I.; Han, M.Y.; Young, A.F.; Ozyilmaz, B.; Kim, P.; Shepard, K.L. Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat. Nanotechnol. 2008, 3, 654–659. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, Z.; Li, P.; Pang, M.; Xue, Q. Flexible self-powered high-performance ammonia sensor based on Au-decorated MoSe2 nanoflowers driven by single layer MoS2-flake piezoelectric nanogenerator. Nano Energy 2019, 65, 103974. [Google Scholar] [CrossRef]
- Lee, H.; Kim, J.H.; Lee, C.J. Electrical characteristics of MoSe2 TFTs dependent on the Al2O3 capping layer. Appl. Phys. Lett. 2016, 109, 222105. [Google Scholar] [CrossRef]
- Guo, S.; Yang, D.; Zhang, S.; Dong, Q.; Li, B.; Tran, N.; Li, Z.; Xiong, Y.; Zaghloul, M.E. Development of a cloud-based epidermal MoSe2 device for hazardous gas sensing. Adv. Funct. Mater. 2019, 29, 1900138. [Google Scholar] [CrossRef]
- Chamlagain, B.; Li, Q.; Ghimire, N.J.; Chuang, H.J.; Perera, M.M.; Tu, H.; Xu, Y.; Pan, M.; Xaio, D.; Yan, J.; et al. Mobility improvement and temperature dependence in MoSe2 field-effect transistors on parylene-C substrate. ACS Nano 2014, 8, 5079–5088. [Google Scholar] [CrossRef]
- Shao, F.; Woo, S.Y.; Wu, N.; Schneider, R.; Mayne, A.J.; de Vasconcellos, S.M.; Arora, A.; Carey, B.J.; Preuß, J.A.; Bonnet, N.; et al. Substrate influence on transition metal dichalcogenide monolayer exciton absorption linewidth broadening. Phys. Rev. Mater. 2022, 6, 074005. [Google Scholar] [CrossRef]
- Fang, H.; Hu, W. Photogating in low dimensional photodetectors. Adv. Sci. 2017, 4, 1700323. [Google Scholar] [CrossRef]
- Huang, H.; Wang, J.; Hu, W.; Liao, L.; Wang, P.; Wang, X.; Gong, F.; Chen, Y.; Wu, G.; Luo, W.; et al. Highly sensitive visible to infrared MoTe2 photodetectors enhanced by the photogating effect. Nanotechnology 2016, 27, 445201. [Google Scholar] [CrossRef]
- Fu, S.; du Fossé, I.; Jia, X.; Xu, J.; Yu, X.; Zhang, H.; Zheng, W.; Krasel, S.; Chen, Z.; Wang, Z.M.; et al. Long-lived charge separation following pump-wavelength–dependent ultrafast charge transfer in graphene/WS2 heterostructures. Sci. Adv. 2021, 7, eabd9061. [Google Scholar] [CrossRef]
- Island, J.O.; Blanter, S.I.; Buscema, M.; van der Zant, H.S.; Castellanos-Gomez, A. Gate controlled photocurrent generation mechanisms in high-gain In2Se3 phototransistors. Nano Lett. 2015, 15, 7853–7858. [Google Scholar] [CrossRef] [Green Version]
Property | SiO2 | SiO2 | SiO2 | SiO2 | SiN | SiN | SiN | SiN |
---|---|---|---|---|---|---|---|---|
7 nm | 21 nm | 63 nm | 90 nm | 29 nm | 36 nm | 47 nm | 87 nm | |
(cm2/V·s) | 0.8 | 72.0 | 116.5 | 43.5 | 63.9 | 55.5 | 51.3 | 164.0 |
ss (mV/dec) | 3.7 × 103 | 1.4 × 103 | 5.0 × 103 | 2.8 × 104 | 2.6 × 103 | 2.5 × 103 | 1.5 × 103 | 3.7 × 103 |
On/Off ratio | 7.0 × 102 | 1.2 × 104 | 1.0 × 104 | 3.1 × 101 | 1.2 × 104 | 9 × 103 | 1.7 × 105 | 9.6 × 102 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abderrahmane, A.; Jung, P.-G.; Woo, C.; Ko, P.J. Effect of Gate Dielectric Material on the Electrical Properties of MoSe2-Based Metal–Insulator–Semiconductor Field-Effect Transistor. Crystals 2022, 12, 1301. https://doi.org/10.3390/cryst12091301
Abderrahmane A, Jung P-G, Woo C, Ko PJ. Effect of Gate Dielectric Material on the Electrical Properties of MoSe2-Based Metal–Insulator–Semiconductor Field-Effect Transistor. Crystals. 2022; 12(9):1301. https://doi.org/10.3390/cryst12091301
Chicago/Turabian StyleAbderrahmane, Abdelkader, Pan-Gum Jung, Changlim Woo, and Pil Ju Ko. 2022. "Effect of Gate Dielectric Material on the Electrical Properties of MoSe2-Based Metal–Insulator–Semiconductor Field-Effect Transistor" Crystals 12, no. 9: 1301. https://doi.org/10.3390/cryst12091301
APA StyleAbderrahmane, A., Jung, P. -G., Woo, C., & Ko, P. J. (2022). Effect of Gate Dielectric Material on the Electrical Properties of MoSe2-Based Metal–Insulator–Semiconductor Field-Effect Transistor. Crystals, 12(9), 1301. https://doi.org/10.3390/cryst12091301