Preparation, Characterization, DFT Calculations, Antibacterial and Molecular Docking Study of Co(II), Cu(II), and Zn(II) Mixed Ligand Complexes
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals
2.1.1. Synthesis of [Co(AMPY)(DAPY)Cl2(H2O)]
2.1.2. Synthesis of [Cu(AMPY)(DAPY)Cl2(H2O)]
2.1.3. Synthesis of [Zn(AMPY)(DAPY)Cl2(H2O)]
2.2. Characterization Methods
2.3. Microbial Strains and Culture Media
2.4. Antimicrobial Activity
2.5. Antioxidant Activity
(DPPH) Radical Scavenging Assay
2.6. Computational Studies
2.7. Molecular Docking Analysis
3. Results and Discussion
3.1. Synthesis and Spectroscopic Characterization
3.2. Magnetic Moments
3.3. Electronic Spectra
3.4. Theoretical Study
3.5. Thermal Analysis
3.5.1. [Co(AMPY)(DAPY)Cl2(H2O)]
3.5.2. [Cu(AMPY)(DAPY)Cl2(H2O)]
3.5.3. [Zn(AMPY)(DAPY)Cl2(H2O)]
3.6. X-ray Powder Diffraction (XRD)
3.7. Scanning Electron Microscopy (SEM)
3.8. Antimicrobial and Antioxidant Assays
3.9. In Silico Docking Study
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kokunov, Y.V.; Gorbunova, Y.E.; Kovalev, V.V.; Kozyukhin, S. Silver complexes with 2-amino-4-methylpyrimidine: Synthesis, crystal structure, and luminescent properties. Russ. J. Coord. Chem. 2013, 39, 565–570.–570. [Google Scholar] [CrossRef]
- Navarro, J.A.; Barea, E.; Galindo, M.A.; Salas, J.M.; Romero, M.A.; Quirós, M.; Masciocchi, N.; Galli, S.; Sironi, A.; Lippert, B. Soft functional polynuclear coordination compounds containing pyrimidine bridges. J. Solid State Chem. 2005, 178, 2436–2451. [Google Scholar] [CrossRef]
- Cook, T.R.; Zheng, Y.-R.; Stang, P.J. Metal−organic frameworks and self-assembled supramolecular coordination complexes: Comparing and contrasting the design, synthesis, and functionality of metal−organic materials. Chem. Rev. 2013, 113, 734–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, C.V.K.; Griffin, S.T.; Rogers, R.D. Simple routes to supramolecular squares with ligand corners: 1: 1 Ag I: Pyrimidine cationic tetranuclear assemblies. Chem. Commun. 1998, 2, 215–216. [Google Scholar] [CrossRef]
- Pettinari, C.; Tabăcaru, A.; Galli, S. Coordination polymers and metal−organic frameworks based on poly (pyrazole)-containing ligands. Coord. Chem. Rev. 2016, 307, 1–31. [Google Scholar] [CrossRef]
- Ye, Y.; Xiong, S.; Wu, X.; Zhang, L.; Li, Z.; Wang, L.; Ma, X.; Chen, Q.-H.; Zhang, Z.; Xiang, S. Microporous Metal−Organic Framework Stabilized by Balanced Multiple Host−Couteranion Hydrogen-Bonding Interactions for High-Density CO2 Capture at Ambient Conditions. Inorg. Chem. 2016, 55, 292–299. [Google Scholar] [CrossRef]
- Shahbazi, M.; Mehrzad, F.; Mirzaei, M.; Eshtiagh-Hosseini, H.; Mague, J.T.; Ardalani, M.; Shamsipur, M. Synthesis, single crystal X-ray characterization, and solution studies of Zn (II)-, Cu (II)-, Ag (I)- and Ni (II)-pyridine-2, 6-dipicolinate N-oxide complexes with different topologies and coordination modes. Inorg. Chim. Acta 2017, 458, 84–96. [Google Scholar] [CrossRef]
- Mandal, T.; Dey, A.; Seth, S.K.; Ortega-Castro, J.; Rheingold, A.L.; Ray, P.P.; Frontera, A.; Mukhopadhyay, S. Influence of 2-Amino-4-methylpyridine and 2-Aminopyrimidine Ligands on the Malonic Acid-Cu(II) System: Insights through Supramolecular Interactions and Photoresponse Properties. ACS Omega 2020, 5, 460–470. [Google Scholar] [CrossRef] [Green Version]
- Yenikaya, C.; Sarı, M.; Bülbül, M.; İlkimen, H.; Çelik, H.; Büyükgüngör, O. Synthesis, characterization and antiglaucoma activity of a novel proton transfer compound and a mixed-ligand Zn(II) complex. Bioorg. Med. Chem. 2010, 18, 930–938. [Google Scholar] [CrossRef]
- Fuhrmann, H.; Brenner, S.; Arndt, P.; Kempe, R. Octahedral group 4 metal complexes that contain amine, amido, and aminopyridinato ligands: synthesis, structure, and application in α-olefin oligo- and polymerization. Inorg. Chem. 1996, 35, 6742–6745. [Google Scholar] [CrossRef]
- London, B.K.; Claville, M.O.F.; Babu, S.; Fronczek, F.R.; Uppu, R.M. A co-crystal of nona-hydrated disodium(II) with mixed anions from m-chlorobenzoic acid and furosemide. Acta Crystallogr. 2015, 71, 1266–1269. [Google Scholar]
- Yenikaya, C.; Büyükkıdan, N.; Sarı, M.; Keşli, R.; İlkimen, H.; Bülbül, M.; Büyükgüngör, O. Synthesis, characterization, and biological evaluation of Cu(II) complexes with the proton transfer salt of 2,6-pyridinedicarboxylic acid and 2-amino-4-methylpyridine. J. Coord. Chem. 2011, 64, 3353–3365. [Google Scholar] [CrossRef]
- Mistri, S.; Zangrando, E.; Manna, S.C. Cu(II) complexes of pyridine-2,6-dicarboxylate and N-donor neutral ligands: Synthesis, crystal structure, thermal behavior, DFT calculation and effect of aromatic compounds on their fluorescence. Inorg. Chim. Acta. 2013, 405, 331–338. [Google Scholar] [CrossRef]
- Yenikaya, C.; Poyraz, M.; Sarı, M.; Demirci, F.; İlkimen, H.; Büyükgüngör, O. Synthesis, characterization and biological evaluation of a novel Cu(II) complex with the mixed ligands 2,6-pyridinedicarboxylic acid and 2-aminopyridine. Polyhedron 2009, 28, 3526–3532. [Google Scholar] [CrossRef]
- Ilkimen, H. Synthesis and characterization of mixed ligand Cu (II) complexes of 2-methoxy-5-sulfamoylbenzoic acid and 2-aminopyridine derivatives. Maced. J. Chem. Chem. Eng. 2019, 38, 13–17. [Google Scholar] [CrossRef] [Green Version]
- Poddar, R.K.; Agarwala, U. Reactions of Ru(PPh3)2Cl2 and [Ru(AsPh3)2Cl2]2 with various donor molecules. J. Inorg. Nucl. Chem. 1973, 35, 3769–3779. [Google Scholar] [CrossRef]
- Raso, A.G.; Fiol, J.J.; Zafra, A.L.; Cabrero, A.; Mata, I.; Molins, E. Crystal structures of the N-salicylidene–Lserinatoaquacopper(II) monohydrate and its ternary derivative with 2-aminopyridine. Polyhedron 1999, 18, 871–878. [Google Scholar] [CrossRef]
- Al-Fakeh, M.S.; Alsaedi, R.O.; Amiri, N.; Allazzam, G.A. Synthesis, Characterization, and Antimicrobial of MnO and CdO Nanoparticles by Using a Calcination Method. Coatings 2022, 12, 215. [Google Scholar] [CrossRef]
- Mahdhi, A.; Leban, N.; Chakroun, I.; Chaouch, M.A.; Hafsa, J.; Fdhila, K.; Mahdouani, K.; Majdoub, H. Extracellular polysaccharide derived from potential probiotic strain with antioxidant and antibacterial activities as a prebiotic agent to control pathogenic bacterial biofilm formation. Microb. Pathog. 2014, 109, 220. [Google Scholar] [CrossRef]
- Dbeibia, A.; Ben Taheur, F.; Altammar, K.A.; Haddaji, N.; Mahdhi, A.; Amri, Z.; Mzoughi, R.; Jabeur, C. Control of Staphylococcus aureus methicillin resistant isolated from auricular infections using aqueous and methanolic extracts of Ephedra alata. Saudi J. Biol. Sci. 2022, 29, 1021–1028. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A.; Vreven, T.; Kudin, K.N.; Burant, J.C.; et al. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2013. [Google Scholar]
- Morris, G.M.; Huey, R.; Olson, A.J. Using AutoDock for ligand-receptor docking. Curr. Protoc. Bioinform. 2008, 24, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- BIOVIA. Dassault Systèmes, v16. 1.0. 15350; Discovery studio visualizer; Dassault Systèmes: San Diego, CA, USA, 2015. Available online: https://www.3ds.com/products-services/biovia/products/molecular-modeling-simulation/biovia-discovery-studio/ (accessed on 7 December 2022).
- Jose, S.P.; Mohan, S. Vibrational Spectra and Normal Co-Ordinate Analysis of 2-Aminopyridine and 2-Amino Picoline. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2006, 64, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Yuoh, A.C.B.; Agwara, M.O.; Yufanyi, D.M.; Conde, M.A.; Jagan, R.; Eyong, K.O. Synthesis, Crystal Structure, and Antimicrobial Properties of a Novel 1-D Cobalt Coordination Polymer with Dicyanamide and 2-Aminopyridine. Int. J. Inorg. Chem. 2015, 2015, 9–12. [Google Scholar] [CrossRef] [Green Version]
- Al-Fakeh, M.S.; Allazzam, G.A.; Yarkandi, N.H. Ni (II), Cu (II), Mn (II), and Fe (II) Metal Complexes Containing 1,3-Bis (diphenylphosphino) propane and Pyridine Derivative: Synthesis, Characterization, and Antimicrobial Activity. Int. J. Biomater. 2021, 2021, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Raducka, A.; Czylkowska, A.; Gobis, K.; Czarnecka, K.; Szymanski, P.; Swiatkowski, M. Characterization of Metal-Bound Benzimidazole Derivatives, Effects on Tumor Cells of Lung Cancer. Materials 2021, 14, 2958. [Google Scholar] [CrossRef]
- Al-Fakeh, M.S. Synthesis, thermal stability and kinetic studies of copper (II) and cobalt (II) complexes derived from 4-aminobenzohydrazide and 2-mercaptobenzothiazole. Eur. Chem. Bull. 2020, 9, 403–409. [Google Scholar] [CrossRef]
- Aly, A.A.M.; Ghandour, M.; Alfakeh, M.S. Synthesis and characterization of transition metal coordination polymers derived from 1,4-Benzenedicarboxylic acid and Azoles. Turk. J. Chem. 2012, 36, 69–79. [Google Scholar]
- Kevin, W.; Wellington, B.; Perry, T.; Kaye, A.; Watkin, G.M. Designer ligands. Part 14. Novel Mn(lI), Ni(II) and Zn(II) complexes of benzamide- and biphenyl-derived ligands. ARKIVOC 2008, 17, 248–264. [Google Scholar]
- Ghandour, M.A.; Aly, A.; Al-Fakeh, M.S. Synthesis and characterization of Cu(II), Cd(II) and Pb(II) coordination polymers derived from 1,4-benzene- and 1,1’-ferrocenedicarboxylate and 2-aminobenzothiazole. J. Indian Chem. Soc. 2011, 88, 1633–1638. [Google Scholar]
- Al-Fakeh, M.S. Synthesis and characterization of coordination polymers of 1,3-di (4-pyridyl)-propane and 2-aminobenzothiazole with Mn(II), Co(II), Cu(II) and Ni(II) ions. J. Chem. Pharm. Res. 2018, 10, 77–83. [Google Scholar]
- Al-Fakeh, M.; Alsaedi, R. Synthesis, Characterization and Antimicrobial Activity of CoO Nanoparticles from a Co (II) Complex Derived from Polyvinyl Alcohol and Aminobenzoic Acid Derivative. Sci. World J. 2021, 2021, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Aly, A.; Ghandour, M.A.; Abu-Zied, B.M.; Al-Fakeh, M.S. Synthesis, properties and environmentally important nanostructured and antimicrobial supramolecular coordination polymers containing 5-(3-pyridyl)-1,3,4-oxadiazole-2-thiol and benzimidazole. J. Environ. Anal. Toxicol. 2012, 2, 2–7. [Google Scholar] [CrossRef]
- Al-Fakeh, M.; Alminderej, F. New method for the preparation and biological activity of CuO nanoparticles from a mixed PVA and 2-Aminobenzothiazole complex. Int. J. ChemTech Res. 2018, 11, 442–449. [Google Scholar]
- El-ajaily, M.M.; Ben-Gweirif, S.F.; El-zweay, R.S.; Maihub, A.A. Synthesis of Some Mixed Ligand Complexes Derived from Catechol and 2-Aminopyridine and Their Biological Activity. J. Pure Appl. Sci. 2007, 6, 5. [Google Scholar]
- Uçar, I.; Karabulut, B.; Bulut, A.; Büyükgüngör, O. Synthesis, structure, spectroscopic and electrochemical properties of (2-amino-4-methylpyrimidine)-(pyridine-2, 6-dicarboxylato) copper (II) monohydrate. J. Mol. Struct. 2007, 834, 336–344. [Google Scholar] [CrossRef]
- Bukharov, M.S.; Shtyrlin, V.G.; Mamin, G.V.; Stapf, S.; Mattea, C.; Mukhtarov, A.S.; Serov, N.Y.; Gilyazetdinov, E.M. Structure and Dynamics of Solvation Shells of Copper(II) Complexes with N,O-Containing Ligands. Inorg. Chem. 2015, 54, 9777–9784. [Google Scholar] [CrossRef]
- Alminderej, F.; Bakari, S.; Almundarij, T.I.; Snoussi, M.; Aouadi, K.; Kadri, A. Antimicrobial and Wound Healing Potential of a New Chemotype from Piper cubeba L. Essential Oil and In Silico Study on S. aureus tyrosyl-tRNA Synthetase Protein. Plants 2021, 10, 205. [Google Scholar] [CrossRef]
Assignment | AMPY | DAPY | Co(II) Complex | Cu(II) Complex | Zn(II) Complex |
---|---|---|---|---|---|
υO-H lattice water υO-H coordinated water | - | - | 3498 3326 | 3418 3306 | - 3307 |
υNH2 | 3312 | - | 3310 | 3296 | 3302 |
υN-H | - | 3179 | 3132 | 3160 | 3172 |
υCH3 | 2920 w | - | 2928 | 2932 | 2930 |
υC-H | 3006 m | - | 2998 w | 2994 w | 2988 w |
υC=C | - | 1590 | 1548 | 1555 | 1567 |
υC=N | - | 1580 | 1536 | 1530 | 1540 |
υC-Nin ring | - | 1456 | 1450 | 1482 | 1495 |
υC-H | 742 | 748 | 760 | 750 | |
M-O | - | - | 554 | 570 | 556 |
M-N | - | - | 468 | 472 | 475 |
M-Cl | - | - | 418 | 436 | 428 |
Bond | M = Cu | M = Zn | M = Co |
---|---|---|---|
M-N(L1) | 2.10 | 2.27 | 2.00 |
M-N(L2) | 2.07 | 2.28 | 2.00 |
M-N(L2) | - | 2.38 | 2.37 |
M-Cl | 2.38 | 2.38 | 2.41 |
M-Cl | 2.37 | 2.58 | 2.36 |
M-OH2 | 2.33 | 2.19 | 2.28 |
Parameters | Co(II)-Complex | Cu(II)-Complex | Zn(II)-Complex |
---|---|---|---|
E.F | C10H16N6CoCl2O | C10H16N6CuCl2O | C10H16N6ZnCl2O |
F.W (gmol−1) | 366 | 370.5 | 372.38 |
Crystal System | Monoclinic(P121) | Monoclinic(P121) | Monoclinic(P121) |
a (Å) | 14.22 | 18.06 | 11.27 |
b (Å) | 5.94 | 6.19 | 13.28 |
c (Å) | 8.20 | 12.51 | 16.93 |
Alfa (°) | 90.00 | 90.00 | 90.00 |
Beta(°) | 95.88 | 107.92 | 108.05 |
gamma(°) | 90.00 | 90.00 | 90.00 |
Particle Size (nm) | 119 | 88 | 175 |
V.U.C (Å3) | 688.98 | 1330.66 | 2409.13 |
Antimicrobial | Antioxidant | |||||
---|---|---|---|---|---|---|
S1 | S4 | S5 | S10 | 9C | ||
Co(II) complex | 2.55±0.07 | 1.45±0.07 | 1.45±0.07 | 1.00±0.14 | 2.35±0.07 | 0±00 |
Cu(II) complex | 1.5±0.07 | 1.25±0.07 | 1.00±0.07 | 1.5 ±0.14 | 1.5±0.21 | 16.5±2.12 |
Zn(II) complex | 1.6±0.14 | 1±0.14 | 1.2±00 | 1.3±0.07 | 0±00 | 91.5±9.19 |
Compound | 1JIJ |
---|---|
Zn(II) complex | −7.2 |
Cu(II) complex | −7.9 |
Co(II) complex | −7.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Fakeh, M.S.; Messaoudi, S.; Alresheedi, F.I.; Albadri, A.E.; El-Sayed, W.A.; Saleh, E.E. Preparation, Characterization, DFT Calculations, Antibacterial and Molecular Docking Study of Co(II), Cu(II), and Zn(II) Mixed Ligand Complexes. Crystals 2023, 13, 118. https://doi.org/10.3390/cryst13010118
Al-Fakeh MS, Messaoudi S, Alresheedi FI, Albadri AE, El-Sayed WA, Saleh EE. Preparation, Characterization, DFT Calculations, Antibacterial and Molecular Docking Study of Co(II), Cu(II), and Zn(II) Mixed Ligand Complexes. Crystals. 2023; 13(1):118. https://doi.org/10.3390/cryst13010118
Chicago/Turabian StyleAl-Fakeh, Maged S., Sabri Messaoudi, Faisal I. Alresheedi, Abuzar EAE Albadri, Wael A. El-Sayed, and Emran Eisa Saleh. 2023. "Preparation, Characterization, DFT Calculations, Antibacterial and Molecular Docking Study of Co(II), Cu(II), and Zn(II) Mixed Ligand Complexes" Crystals 13, no. 1: 118. https://doi.org/10.3390/cryst13010118
APA StyleAl-Fakeh, M. S., Messaoudi, S., Alresheedi, F. I., Albadri, A. E., El-Sayed, W. A., & Saleh, E. E. (2023). Preparation, Characterization, DFT Calculations, Antibacterial and Molecular Docking Study of Co(II), Cu(II), and Zn(II) Mixed Ligand Complexes. Crystals, 13(1), 118. https://doi.org/10.3390/cryst13010118