Structural, Mechanical, and Piezoelectric Properties of Janus Bidimensional Monolayers
Abstract
:1. Introduction
2. Computational Details and Methods
3. Results and Discussion
3.1. Crystal Structures and Symmetry
3.2. Elastic Theory and Properties
3.3. Piezoelectric Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Debbichi, M.; Alhodaib, A. Stability, electronic and magnetic properties of the penta-CoAsSe monolayer: A first-principles and Monte Carlo study. Phys. Chem. Chem. Phys. 2022, 24, 5680. [Google Scholar] [CrossRef] [PubMed]
- Debbichi, M.; Mallah, A.; Dhaou, M.H.; Lebègue, S. First-Principles Study of Monolayer penta-CoS2 as a Promising Anode Material for Li/Na-ion Batteries. Phys. Rev. Appl. 2021, 16, 024016. [Google Scholar] [CrossRef]
- Debbichi, M.; Said, H.; Garbouj, H.; El Hog, S.; An Dinh, V. A new ternary Pentagonal Monolayer based on Bi with large intrinsic Dzyaloshinskii-Moriya interaction. J. Phys. D Appl. Phys. 2021, 55, 015002. [Google Scholar] [CrossRef]
- Debbichi, M.; Debbichi, L.; Lebègue, S. Tuning the magnetic and electronic properties of monolayer chromium tritelluride through strain engineering. Phys. Lett. A 2020, 384, 126684. [Google Scholar] [CrossRef]
- Debbichi, M.; Debbichi, L.; Lebègue, S. Controlling the stability and the electronic structure of transition metal dichalcogenide single layer under chemical doping. Phys. Lett. A 2019, 383, 2922–2927. [Google Scholar] [CrossRef]
- Sa, B.; Hu, R.; Zheng, Z.; Xiong, R.; Zhang, Y.; Wen, C.; Zhou, J.; Sun, Z. High-Throughput Computational Screening and Machine Learning Modeling of Janus 2D III–VI van der Waals Heterostructures for Solar Energy Applications. Chem. Mater. 2022, 34, 6687–6701. [Google Scholar] [CrossRef]
- Zhang, L.; Gu, Y.; Du, A. Two-Dimensional Janus Antimony Selenium Telluride with Large Rashba Spin Splitting and High Electron Mobility. ACS Omega 2021, 6, 31919–31925. [Google Scholar] [CrossRef]
- Vu, T.V.; Hieu, N.N. Novel Janus group III chalcogenide monolayers Al2XY2 (X/Y = S, Se, Te): First-principles insight onto the structural, electronic, and transport properties. J. Phys. Condens. Matter 2021, 34, 115601. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, L.; He, J. 2D Nb3SBr7 and Ta3SBr7: Experimentally Achievable Janus Photocatalysts with Robust Coexistence of Strong Optical Absorption, Intrinsic Charge Separation, and Ultrahigh Solar-to-Hydrogen Efficiency. ACS Appl. Mater. Interfaces 2022, 14, 1643–1651. [Google Scholar] [CrossRef]
- Wang, P.; Liu, H.; Zong, Y.; Wen, H.; Xia, J.B.; Wu, H.B. Two-Dimensional In2X2X’ (X and X’ = S, Se, and Te) Monolayers with an Intrinsic Electric Field for High-Performance Photocatalytic and Piezoelectric Applications. ACS Appl. Mater. Interfaces 2021, 13, 34178–34187. [Google Scholar] [CrossRef]
- Babaee Touski, S.; Ghobadi, N. Structural, electrical, and Rashba properties of monolayer Janus Si2XY (X,Y =P, As, Sb, and Bi). Phys. Rev. B 2021, 103, 165404. [Google Scholar] [CrossRef]
- Blonsky, M.N.; Zhuang, H.L.; Singh, A.K.; Hennig, R.G. Ab Initio Prediction of Piezoelectricity in Two-Dimensional Materials. ACS Nano. 2015, 9, 9885–9891. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Zhang, F.; Li, H.; Chen, X.; Zhu, B.; Guo, H.; Ding, Z.; Bao, J.; Yu, J. Giant Piezoelectricity of Janus M2SeX (M = Ge, Sn; X = S, Te) Monolayers. IEEE Electron Device Lett. 2021, 42, 561–564. [Google Scholar] [CrossRef]
- Guo, S.D.; Guo, X.S.; Cai, X.X.; Mu, W.Q.; Ren, W.C. Intrinsic piezoelectric ferromagnetism with large out-of-plane piezoelectric response in Janus monolayer CrBr1.5I0.5. J. Appl. Phys. 2021, 129, 214301. [Google Scholar] [CrossRef]
- Wu, W.; Wang, Z.L. Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics). Nat. Rev. Mater. 2016, 1, 16031. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, J.; Yu, J.; Guo, Y.; Sun, Q. Symmetry-breaking induced large piezoelectricity in Janus tellurene materials. Phys. Chem. Chem. Phys. 2019, 21, 1207–1216. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lei, S.; Huang, Q.; Wan, N.; Xu, F.; Yu, H.; Li, C.; Chen, J. Coexistence of the Piezoelectricity and Intrinsic Quantum-Spin Hall Effect in GaTeS and InTeS Monolayers: Implications for Spintronic Devices. ACS Appl. Nano Mater. 2022, 5, 11037–11044. [Google Scholar] [CrossRef]
- Guo, S.D.; Mu, W.Q.; Xiao, X.B.; Liu, B.G. Intrinsic room-temperature piezoelectric quantum anomalous hall insulator in Janus monolayer Fe2IX (X = Cl and Br). Nanoscale 2021, 13, 12956–12965. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.D.; Zhu, Y.T.; Qin, K.; Ang, Y.S. Large out-of-plane piezoelectric response in ferromagnetic monolayer NiClI. Appl. Phys. Lett. 2022, 120, 232403. [Google Scholar] [CrossRef]
- Noor-A-Alam, M.; Nolan, M. Large piezoelectric response in ferroelectric/multiferroelectric metal oxyhalide MOX2 (M = Ti, V and X = F, Cl and Br) monolayers. Nanoscale 2022, 14, 11676–11683. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Vanderbilt, D.; Hamann, D.R. Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory. Phys. Rev. B 2005, 72, 035105. [Google Scholar] [CrossRef] [Green Version]
- Becke, A.D.; Edgecombe, K.E. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 1990, 92, 5397–5403. [Google Scholar] [CrossRef]
- Liu, M.Y.; Gong, L.; He, Y.; Cao, C. Intraband Lifshitz transition and Stoner ferromagnetism in Janus PA2As (A=Si,Ge,Sn, and Pb) monolayers. Phys. Rev. B 2021, 104, 035409. [Google Scholar] [CrossRef]
- Demirtas, M.; Varjovi, M.J.; Cicek, M.M.; Durgun, E. Tuning structural and electronic properties of two-dimensional aluminum monochalcogenides: Prediction of Janus Al2XX’(X/X’:O,S,Se,Te) monolayers. Phys. Rev. Mater. 2020, 4, 114003. [Google Scholar]
- Kumar, V.; Jung, J. Two-dimensional Janus group-III ternary chalcogenide monolayer compounds B2XY, Al2XY, and BAlX2 (X, Y = S, Se, Te) with high carrier mobilities. Bull. Korean Chem. Soc. 2022, 43, 138–146. [Google Scholar] [CrossRef]
- Huang, A.; Shi, W.; Wang, Z. Optical Properties and Photocatalytic Applications of Two-Dimensional Janus Group-III Monochalcogenides. J. Phys. Chem. C 2019, 123, 11388–11396. [Google Scholar] [CrossRef]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef]
- Duerloo, K.A.N.; Ong, M.T.; Reed, E.J. Intrinsic Piezoelectricity in Two-Dimensional Materials. J. Phys. Chem. Lett. 2012, 3, 2871–2876. [Google Scholar]
- Song, L.; Ci, L.; Lu, H.; Sorokin, P.B.; Jin, C.; Ni, J.; Kvashnin, A.G.; Kvashnin, D.G.; Lou, J.; Yakobson, B.I.; et al. Large Scale Growth and Characterization of Atomic Hexagonal Boron Nitride Layers. Nano Lett. 2010, 10, 3209–3215. [Google Scholar] [CrossRef] [PubMed]
- Frantsevich, I.; Voronov, F.; Bokuta, S. Elastic Constants and Elastic Moduli of Metals and Insulators Handbook; Naukova Dumka: Kiev, Ukraine, 1983; pp. 60–180. [Google Scholar]
- Debbichi, M.; Alresheedi, F. First-principles calculations of mechanical, electronic and optical properties of a new imidooxonitridophosphate. Chem. Phys. 2020, 538, 110917. [Google Scholar] [CrossRef]
- Xiao, W.Z.; Xu, L.; Xiao, G.; Wang, L.L.; Dai, X.Y. Two-dimensional hexagonal chromium chalco-halides with large vertical piezoelectricity, high-temperature ferromagnetism, and high magnetic anisotropy. Phys. Chem. Chem. Phys. 2020, 22, 14503–14513. [Google Scholar] [CrossRef]
- Yin, H.; Gao, J.; Zheng, G.P.; Wang, Y.; Ma, Y. Giant Piezoelectric Effects in Monolayer Group-V Binary Compounds with Honeycomb Phases: A First-Principles Prediction. J. Phys. Chem. C 2017, 121, 25576–25584. [Google Scholar] [CrossRef]
- Guo, Y.; Zhou, S.; Bai, Y.; Zhao, J. Enhanced piezoelectric effect in Janus group-III chalcogenide monolayers. Appl. Phys. Lett. 2017, 110, 163102. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, Y.; Xiao, J.; Liu, M.; Xiong, S.; Wong, Z.J.; Ye, Z.; Yin, X.; Zhang, X. Observation of Piezoelectricity in Free-standing Monolayer Molybdenum Disulfide. Nat. Nanotech. 2015, 10, 151–155. [Google Scholar] [CrossRef]
- Li, Y.Q.; Wang, X.Y.; Zhu, S.Y.; Tang, D.S.; He, Q.W.; Wang, X.C. Active Asymmetric Electron-Transfer Effect on the Enhanced Piezoelectricity in MoTO (T = S, Se, or Te) Monolayers and Bilayers. J. Phys. Chem. Lett. 2022, 13, 9654–9663. [Google Scholar] [CrossRef]
- Shi, X.; Yin, H.; Jiang, S.; Chen, W.; Zheng, G.P.; Ren, F.; Wang, B.; Zhao, G.; Liu, B. Janus 2D titanium nitride halide TiNX0.5Y0.5 (X, Y = F, Cl, or Br and X≠ Y) monolayers with giant out-of-plane piezoelectricity and high carrier mobility. Phys. Chem. Chem. Phys. 2021, 23, 3637. [Google Scholar] [CrossRef]
- Jena, N.; Rawat, A.; Ahammed, R.; Mohanta, M.K.; De Sarkar, A. Emergence of high piezoelectricity along with robust electron mobility in Janus structures in semiconducting Group IVB dichalcogenide monolayers. J. Mater. Chem. A 2018, 6, 24885. [Google Scholar]
- Qiu, J.; Li, H.; Chen, X.; Zhu, B.; Guo, H.; Zhang, F.; Ding, Z.; Lang, L.; Yu, J.; Bao, J. Piezoelectricity of Janus Sb2Se2Te monolayers: A first-principles study. J. Appl. Phys. 2021, 129, 125109. [Google Scholar] [CrossRef]
- Kahraman, Z.; Kandemir, A.; Yagmurcukardes, M.; Sahin, H. Single-Layer Janus-Type Platinum Dichalcogenides and Their Heterostructures. J. Phys. Chem. C 2019, 123, 4549–4557. [Google Scholar] [CrossRef]
Monolayer | a | d | d | d | |
---|---|---|---|---|---|
(Å) | (Å) | (Å) | (Å) | (eV) | |
AlSO | 3.36 | 2.60 | 2.26 | 2.00 | 0.30 |
AlSeO | 3.42 | 2.59 | 2.38 | 2.03 | 0.42 |
AlTeO | 3.49 | 2.63 | 2.61 | 2.06 | 0.24 |
AlTeS | 3.85 | 2.58 | 2.41 | 2.63 | 0.16 |
AlTeSe | 3.96 | 2.57 | 2.53 | 2.65 | 0.59 |
AlSeS | 3.67 | 2.60 | 2.44 | 2.35 | 0.06 |
SiPAs | 3.62 | 2.37 | 2.37 | 2.31 | 0.47 |
SiPSb | 3.76 | 2.36 | 2.54 | 2.36 | 0.57 |
SiPBi | 3.81 | 2.34 | 2.63 | 2.38 | 0.39 |
SiAsSb | 3.84 | 2.34 | 2.57 | 2.45 | 0.26 |
SiAsBi | 3.92 | 2.34 | 2.65 | 2.49 | 0.79 |
SiSbBi | 4.08 | 2.35 | 2.69 | 2.64 | 0.26 |
GePAs | 3.73 | 2.50 | 2.45 | 2.39 | 0.29 |
SnPAs | 4.03 | 2.90 | 2.59 | 2.65 | 0.087 |
PbPAs | 4.18 | 3.04 | 2.68 | 2.74 | 0.270 |
Monolayer | C | C | C | ||||
---|---|---|---|---|---|---|---|
AlSO | 96.54 | 24.68 | 35.92 | 90.23 | 0.25 | 35.92 | 60.61 |
AlSeO | 84.45 | 26.80 | 28.82 | 75.94 | 0.31 | 28.82 | 55.62 |
AlTeO | 47.24 | 15.85 | 15.69 | 41.92 | 0.33 | 15.69 | 31.55 |
AlTeS | 65.77 | 13.01 | 26.37 | 63.19 | 0.19 | 26.37 | 39.39 |
AlTeSe | 62.20 | 13.23 | 24.48 | 59.38 | 0.21 | 24.48 | 37.72 |
AlSeS | 75.50 | 15.58 | 29.96 | 72.29 | 0.20 | 29.96 | 45.54 |
SiPAs | 112.95 | 16.96 | 47.99 | 110.40 | 0.15 | 47.99 | 64.95 |
SiPSb | 94.02 | 13.96 | 40.03 | 91.95 | 0.14 | 40.03 | 53.99 |
SiPBi | 52.36 | 24.72 | 13.82 | 40.69 | 0.47 | 13.82 | 38.54 |
SiAsSb | 88.94 | 16.01 | 36.46 | 86.05 | 0.18 | 36.46 | 52.48 |
SiAsBi | 80.65 | 18.74 | 30.95 | 76.30 | 0.23 | 30.95 | 49.70 |
SiSbBi | 70.54 | 15.95 | 27.29 | 66.93 | 0.22 | 27.29 | 43.24 |
GePAs | 98.80 | 20.54 | 39.12 | 94.52 | 0.20 | 39.12 | 59.67 |
SnPAs | 73.34 | 17.80 | 27.77 | 69.02 | 0.24 | 27.77 | 45.57 |
PbPAs | 44.19 | 6.57 | 18.80 | 43.21 | 0.14 | 18.80 | 25.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mallah, A.; Debbichi, M.; Dhaou, M.H.; Bellakhdhar, B. Structural, Mechanical, and Piezoelectric Properties of Janus Bidimensional Monolayers. Crystals 2023, 13, 126. https://doi.org/10.3390/cryst13010126
Mallah A, Debbichi M, Dhaou MH, Bellakhdhar B. Structural, Mechanical, and Piezoelectric Properties of Janus Bidimensional Monolayers. Crystals. 2023; 13(1):126. https://doi.org/10.3390/cryst13010126
Chicago/Turabian StyleMallah, Abdulrahman, Mourad Debbichi, Mohamed Houcine Dhaou, and Bilel Bellakhdhar. 2023. "Structural, Mechanical, and Piezoelectric Properties of Janus Bidimensional Monolayers" Crystals 13, no. 1: 126. https://doi.org/10.3390/cryst13010126
APA StyleMallah, A., Debbichi, M., Dhaou, M. H., & Bellakhdhar, B. (2023). Structural, Mechanical, and Piezoelectric Properties of Janus Bidimensional Monolayers. Crystals, 13(1), 126. https://doi.org/10.3390/cryst13010126