Experiments and Crystal Plasticity Finite Element Simulations of Texture Development during Cold Rolling in a Ti-15V-3Cr-3Sn-3Al Alloy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Processing
2.2. Characterization
2.3. FE Model for Indentation Simulation
2.4. Crystal Plasticity Model (PRISMS) and Cold Rolling Simulations
3. Results and Discussion
3.1. Indentation
3.2. Microstructures
3.3. Experimental Texture
3.4. Texture after CPFE Cold Rolling Simulations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Donachie, M.J. Titanium—A Technical Guide, 2nd ed.; ASM International: Materials park, Ohio, 2000. [Google Scholar] [CrossRef]
- Boyer, R.R.; Briggs, R.D. The use of β titanium alloys in the aerospace industry. J. Mater. Eng. Perform. 2005, 14, 681–685. [Google Scholar] [CrossRef]
- Ankem, S.; Greene, C.A. Recent developments in microstructure/property relationships of beta titanium alloys. Mater. Sci. Eng. A 1999, 263, 127–131. [Google Scholar] [CrossRef]
- Terlinde, G.; Fischer, G.; Metallwerke, O.F. Beta Titanium Alloys. In Titanium and Titanium Alloys: Fundamentals and Applications; Leyens, C., Peters, M., Eds.; Wiley-VCH: Weinheim, Germany, 2003; pp. 37–57. [Google Scholar] [CrossRef]
- Bania, P.J. Beta titanium alloys and their role in the titanium industry. JOM J. Miner. Met. Mater. Soc. 1994, 46, 16–19. [Google Scholar] [CrossRef]
- Rosenberg, H.W. Ti-15-3: A New Cold-Formable Sheet Titanium Alloy. JOM J. Miner. Met. Mater. Soc. 1983, 35, 30–34. [Google Scholar] [CrossRef]
- Grosdidier, T.; Roubaud, C.; Philippe, M.J.; Combres, Y. The deformation mechanisms in the β-metastable β-cez titanium alloy. Scr. Mater. 1997, 36, 21–28. [Google Scholar] [CrossRef]
- Wood, R.A.; Williams, D.N.; Boyd, J.D.; Rothman, R.L.; Bartlett, E.S. Strain Transformable Beta Titanium·Base Alloys, AFML·TR·70-257. 1970. Available online: https://apps.dtic.mil/sti/citations/AD0877899 (accessed on 21 December 2022).
- Karasevskaya, O.P.; Ivasishin, O.M.; Semiatin, S.L.; Matviychuk, Y.V. Deformation behavior of beta-titanium alloys. Mater. Sci. Eng. A 2003, 354, 121–132. [Google Scholar] [CrossRef]
- Qiang, G.; Qing, W.; Dong-Li, S.; Xiu-Li, H.; Gao-Hui, W. Formation of nanostructure and mechanical properties of cold-rolled Ti-15V-3Sn-3Al-3Cr alloy. Mater. Sci. Eng. A 2010, 527, 4229–4232. [Google Scholar] [CrossRef]
- Ide, N.; Morita, T.; Takahashi, K.; Seto, H. Influence of cold rolling on fundamental properties of Ti-15V-3Cr-3Sn-3Al alloy. Mater. Trans. 2015, 56, 1800–1806. [Google Scholar] [CrossRef]
- Ivasishin, O.M.; Markovsky, P.E.; Matviychuk, Y.V.; Semiatin, S.L. Precipitation and recrystallization behavior of beta titanium alloys during continuous heat treatment. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2003, 34, 147–158. [Google Scholar] [CrossRef]
- Gupta, A.; Khatirkar, R.K.; Kumar, A.; Thool, K.; Bibhanshu, N.; Suwas, S. Microstructure and texture development in Ti-15V-3Cr-3Sn-3Al alloy—Possible role of strain path. Mater. Charact. 2019, 156, 109884. [Google Scholar] [CrossRef]
- Hutchinson, W.B. Development and control of annealing textures in low-carbon steels. Int. Met. Rev. 1984, 29, 25–42. [Google Scholar] [CrossRef]
- Ray, R.K.; Jonas, J.J.; Hook, R.E. Cold rolling and annealing textures in low carbon and extra low carbon steels. Int. Mater. Rev. 1994, 39, 129–172. [Google Scholar] [CrossRef]
- Mishra, S.; Darmann, C. Role and control of texture in deep-drawing steels. Int. Met. Rev. 1982, 27, 307–320. [Google Scholar] [CrossRef]
- Juntunen, P.; Karjalainen, P.; Raabe, D.; Bolle, G.; Kopio, T. Optimizing continuous annealing of interstitial-free steels for improving deep drawability. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2001, 32, 1989–1995. [Google Scholar] [CrossRef]
- Khatirkar, R.; Kestens, L.A.I.; Petrov, R.; Samajdar, I. Controlled Warm Working: Possible Tool for Optimizing Stored Energy Advantage in Deformed γ-fiber (ND//‹111›). ISIJ Int. 2009, 49, 78–85. [Google Scholar] [CrossRef] [Green Version]
- Khatirkar, R.; Vadavadagi, B.; Haldar, A.; Samajdar, I. ND//<111> Recrystallization in Interstitial Free Steel: The Defining Role of Growth Inhibition. ISIJ Int. 2012, 52, 894–901. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Khatirkar, R.K.; Dandekar, T.; Jha, J.S.; Mishra, S. Recrystallization behavior of a cold rolled Ti–15V–3Sn–3Cr–3Al alloy. J. Mater. Res. 2019, 34, 3082–3092. [Google Scholar] [CrossRef]
- Ghaderi, A.; Hodgson, P.D.; Barnett, M.R. Microstructure and texture development in Ti-5Al-5Mo- 5V-3Cr alloy during cold rolling and annealing. Key Eng. Mater. 2013, 551, 210–216. [Google Scholar]
- Gupta, A.; Khatirkar, R.K.; Kumar, A.; Thool, K.S.; Bhibhanshu, N.; Suwas, S. Texture Development During Cold Rolling of a β-Ti Alloy: Experiments and Simulations. Metall. Mater. Trans. A 2021, 52, 1031–1043. [Google Scholar] [CrossRef]
- Molinari, A.; Tóth, L.S. Tuning a self consistent viscoplastic model by finite element results—I. Modeling. Acta Metall. Mater. 1994, 42, 2453–2458. [Google Scholar] [CrossRef]
- Lebensohn, R.A.; Tomé, C.N. A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys. Acta Metall. Mater. 1993, 41, 2611–2624. [Google Scholar] [CrossRef]
- Kumar, A.; Khatirkar, R.K.; Chalapathi, D.; Bibhanshu, N.; Suwas, S. Texture development during cold rolling of Fe–Cr–Ni alloy-experiments and simulations. Philos. Mag. 2017, 97, 1939–1962. [Google Scholar] [CrossRef]
- Furstoss, J.; Bernacki, M.; Petit, C.; Fausty, J.; Pino Muñoz, D.; Ganino, C. Full Field and Mean Field Modeling of Grain Growth in a Multiphase Material Under Dry Conditions: Application to Peridotites. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018138. [Google Scholar] [CrossRef]
- Deeparekha, N.; Gupta, A.; Demiral, M.; Khatirkar, R.K. Cold Rolling of an Interstitial Free (IF) Steel—Experiments and Simulations; Elsevier Ltd: Amsterdam, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Zhao, P.; Song En Low, T.; Wang, Y.; Niezgoda, S.R. An integrated full-field model of concurrent plastic deformation and microstructure evolution: Application to 3D simulation of dynamic recrystallization in polycrystalline copper. Int. J. Plast. 2016, 80, 38–55. [Google Scholar] [CrossRef] [Green Version]
- Zherebtsov, S.V.; Murzinova, M.A.; Klimova, M.V.; Salishchev, G.A.; Popov, A.A.; Semiatin, S.L. Microstructure evolution during warm working of Ti-5Al-5Mo-5V-1Cr-1Fe at 600 and 800°C. Mater. Sci. Eng. A 2013, 563, 168–176. [Google Scholar] [CrossRef] [Green Version]
- Sedighiani, K.; Diehl, M.; Traka, K.; Roters, F.; Sietsma, J.; Raabe, D. An efficient and robust approach to determine material parameters of crystal plasticity constitutive laws from macro-scale stress–strain curves. Int. J. Plast. 2020, 134, 102779. [Google Scholar] [CrossRef]
- Herrera-Solaz, V.; LLorca, J.; Dogan, E.; Karaman, I.; Segurado, J. An inverse optimization strategy to determine single crystal mechanical behavior from polycrystal tests: Application to AZ31 Mg alloy. Int. J. Plast. 2014, 57, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Zambaldi, C.; Raabe, D. Plastic anisotropy of γ-TiAl revealed by axisymmetric indentation. Acta Mater. 2010, 58, 3516–3530. [Google Scholar] [CrossRef]
- Shirazi, H.A.; Mirmohammadi, S.A.; Shaali, M.; Asnafi, A.; Ayatollahi, M.R. A constitutive material model for a commercial PMMA bone cement using a combination of nano-indentation test and finite element analysis. Polym. Test. 2017, 59, 328–335. [Google Scholar] [CrossRef]
- Xiao, X.; Terentyev, D.; Bakaev, A.; Zinovev, A.; Dubinko, A.; Zhurkin, E.E. Crystal plasticity finite element method simulation for the nano-indentation of plasma-exposed tungsten. J. Nucl. Mater. 2019, 518, 334–341. [Google Scholar] [CrossRef]
- Liu, M.; Lu, C.; Tieu, A.K. Crystal plasticity finite element method modelling of indentation size effect. Int. J. Solids Struct. 2015, 54, 42–49. [Google Scholar] [CrossRef]
- Liu, M. Crystal Plasticity and Experimental Studies of Nano-Indentation of Aluminium and Copper, 2014. Available online: https://ro.uow.edu.au/theses (accessed on 21 December 2022).
- Zhang, T.; Wang, S.; Wang, W. Method to determine the optimal constitutive model from spherical indentation tests. Results Phys. 2018, 8, 716–727. [Google Scholar] [CrossRef]
- Demiral, M.; Roy, A.; Silberschmidt, V.V. Indentation studies in b.c.c. crystals with enhanced model of strain-gradient crystal plasticity. Comput. Mater. Sci. 2013, 79, 896–902. [Google Scholar] [CrossRef] [Green Version]
- Demiral, M.; Roy, A.; Silberschmidt, V.V. Numerical modelling of size effects in micro-cutting of fcc single crystal: Influence of strain gradients. J. Manuf. Process. 2022, 74, 511–519. [Google Scholar] [CrossRef]
- Chakraborty, A.; Eisenlohr, P. Evaluation of an inverse methodology for estimating constitutive parameters in face-centered cubic materials from single crystal indentations. Eur. J. Mech. ASolids 2017, 66, 114–124. [Google Scholar] [CrossRef]
- Nelder, J.A.; Mead, R. A Simplex Method for Function Minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
- Zambaldi, C.; Yang, Y.; Bieler, T.R.; Raabe, D. Orientation informed nanoindentation of α-titanium: Indentation pileup in hexagonal metals deforming by prismatic slip. J. Mater. Res. 2012, 27, 356–367. [Google Scholar] [CrossRef]
- Lin, F.; Marteleur, M.; Alkorta, J.; Jacques, P.J.; Delannay, L. Local stress field induced by twinning in a metastable β titanium alloy. IOP Conf. Ser. Mater. Sci. Eng. 2017, 219, 012031. [Google Scholar] [CrossRef]
- Demiral, M.; Roy, A.; El Sayed, T.; Silberschmidt, V.V. Influence of strain gradients on lattice rotation in nano-indentation experiments: A numerical study. Mater. Sci. Eng. A 2014, 608, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Gerday, A.F.; Ben Bettaieb, M.; Duchêne, L.; Clément, N.; Diarra, H.; Habraken, A.M. Interests and limitations of nanoindentation for bulk multiphase material identification: Application to the β phase of Ti-5553. Acta Mater. 2009, 57, 5186–5195. [Google Scholar] [CrossRef]
- Yalcinkaya, T.; Brekelmans, W.A.M.; Geers, M.G.D. BCC single crystal plasticity modeling and its experimental identification. Model. Simul. Mater. Sci. Eng. 2008, 16, 085007. [Google Scholar] [CrossRef]
- Yaghoobi, M.; Ganesan, S.; Sundar, S.; Lakshmanan, A.; Rudraraju, S.; Allison, J.E.; Sundararaghavan, V. PRISMS-Plasticity: An open-source crystal plasticity finite element software. Comput. Mater. Sci. 2019, 169, 109078. [Google Scholar] [CrossRef]
- Bunge, H.-J. Bunge_TextureAnalysis.pdf. 1982. Available online: http://www.ebsd.info/pdf/Bunge_TextureAnalysis.pdf (accessed on 21 December 2022).
- Vander Voort, G.F. Metallography and Microstructures; ASM International: Almere, Netherlands, 2004. [Google Scholar] [CrossRef]
- Bunge, H.-J. Zur darstellung allgemeiner texturen. Z. Fur Met. 1965, 56, 872. [Google Scholar] [CrossRef]
- Michael Smith ABAQUS/CAE User’s Manual. ABAQUS/CAE User’s Man. 2001, pp. 1–847. Available online: https://www.academia.edu/38631701/ABAQUS_CAE_Users_Manual_ABAQUS_CAE_Users_Manual (accessed on 21 December 2022).
- Huang, Y. A User-Material Subroutine Incorporating Single Crystal Plasticity in the ABAQUS Finite Element Program. MECH Report 178, Division of Engineering and Applied Sciences; Harvard University: Cambridge, MA, USA, 1991. [Google Scholar]
- Qidwai, M.A.S.; Lewis, A.C.; Geltmacher, A.B. Using image-based computational modeling to study microstructure-yield correlations in metals. Acta Mater. 2009, 57, 4233–4247. [Google Scholar] [CrossRef]
- Staroselsky, A.; Anand, L. A constitutive model for hcp materials deforming by slip and twinning. Int. J. Plast. 2003, 19, 1843–1864. [Google Scholar] [CrossRef]
- Sundararaghavan, V.; Zabaras, N. A multi-length scale sensitivity analysis for the control of texture-dependent properties in deformation processing. Int. J. Plast. 2008, 24, 1581–1605. [Google Scholar] [CrossRef]
- Kumar, A.; Jha, A. Introduction. In Anticandidal Agents; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Acar, P.; Ramazani, A.; Sundararaghavan, V. Crystal Plasticity Modeling and Experimental Validation with an Orientation Distribution Function for Ti-7Al Alloy. Metals 2017, 7, 459. [Google Scholar] [CrossRef] [Green Version]
- Prism, GraphPad Prism 8 User Guide—How to Learn Prism. 2019, pp. 1–688. Available online: https://www.graphpad.com/guides/prism/8/user-guide/how_to_learn_prism.htm (accessed on 21 December 2022).
- Anand, L.; Kothari, M. A computational procedure for rate independent crystal plasticity. J. Mech. Phys. Solids 1996, 44, 525–558. [Google Scholar] [CrossRef]
- Groeber, M.A.; Jackson, M.A. DREAM.3D: A Digital Representation Environment for the Analysis of Microstructure in 3D. Integr. Mater. Manuf. Innov. 2014, 3, 56–72. [Google Scholar] [CrossRef] [Green Version]
- Hielscher, R.; Schaeben, H. A novel pole figure inversion method: Specification of the MTEX algorithm. J. Appl. Crystallogr. 2008, 41, 1024–1037. [Google Scholar] [CrossRef]
- Dillamore, I.L.; Hazel, R.J.; Watson, T.W.; Hadden, P. An experimental study of the mechanical anisotropy of some common metals. Int. J. Mech. Sci. 1971, 13, 1049–1061. [Google Scholar] [CrossRef]
- Unnikrishnan, R.; Kumar, A.; Khatirkar, R.K.; Shekhawat, S.K.; Sapate, S.G. Structural developments in un-stabilized ultra low carbon steel during warm deformation and annealing. Mater. Chem. Phys. 2016, 183, 339–348. [Google Scholar] [CrossRef]
- Cicalè, S.; Samajdar, I.; Verlinden, B.; Abbruzzese, G.; Houtte, P. Van Development of Cold Rolled Texture and Microstructure in a Hot Band Fe-3%Si Steel. ISIJ Int. 2002, 42, 770–778. [Google Scholar] [CrossRef]
- Pantleon, W. Resolving the geometrically necessary dislocation content by conventional electron backscattering diffraction. Scr. Mater. 2008, 58, 994–997. [Google Scholar] [CrossRef]
V | Al | Sn | Cr | Mo | Si | Ti | |
---|---|---|---|---|---|---|---|
Ti-15333 | 14.50 | 3.59 | 3.36 | 2.35 | 1.23 | 0.44 | Balance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahadule, D.; Demiral, M.; Mulki, H.; Khatirkar, R.K. Experiments and Crystal Plasticity Finite Element Simulations of Texture Development during Cold Rolling in a Ti-15V-3Cr-3Sn-3Al Alloy. Crystals 2023, 13, 137. https://doi.org/10.3390/cryst13010137
Mahadule D, Demiral M, Mulki H, Khatirkar RK. Experiments and Crystal Plasticity Finite Element Simulations of Texture Development during Cold Rolling in a Ti-15V-3Cr-3Sn-3Al Alloy. Crystals. 2023; 13(1):137. https://doi.org/10.3390/cryst13010137
Chicago/Turabian StyleMahadule, Diksha, Murat Demiral, Hasan Mulki, and Rajesh K. Khatirkar. 2023. "Experiments and Crystal Plasticity Finite Element Simulations of Texture Development during Cold Rolling in a Ti-15V-3Cr-3Sn-3Al Alloy" Crystals 13, no. 1: 137. https://doi.org/10.3390/cryst13010137
APA StyleMahadule, D., Demiral, M., Mulki, H., & Khatirkar, R. K. (2023). Experiments and Crystal Plasticity Finite Element Simulations of Texture Development during Cold Rolling in a Ti-15V-3Cr-3Sn-3Al Alloy. Crystals, 13(1), 137. https://doi.org/10.3390/cryst13010137