Hirshfeld Surface Analysis and Density Functional Theory Calculations of 2-Benzyloxy-1,2,4-triazolo[1,5-a] quinazolin-5(4H)-one: A Comprehensive Study on Crystal Structure, Intermolecular Interactions, and Electronic Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hirshfeld Surface Studies, Interaction Energies and 3D Energy Frameworks
2.2. Density Functional Theory Calculations
3. Results and Discussion
3.1. The Crystal Structure Data and Refinement Details (CCDC 834498)
3.2. Geometry Optimizations
3.2.1. Bond Lengths
3.2.2. Bond Angles
3.3. Hirshfeld Surface Analysis
3.4. Interaction Energy and 3D Energy Frameworks
3.5. Frontier Molecular Orbital (FMO) Analysis
3.6. Global Reactivity Descriptors
3.7. The Molecular Electrostatic Potential (MEP)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abuelizz, H.A.; Al-Salahi, R. An overview of triazoloquinazolines: Pharmacological significance and recent developments. Bioorgan. Chem. 2021, 115, 105263. [Google Scholar] [CrossRef] [PubMed]
- Kehler, J.; Ritzen, A.; Langgård, M.; Petersen, S.L.; Farah, M.M.; Bundgaard, C.; Christoffersen, C.T.; Nielsen, J.; Kilburn, J.P. Triazoloquinazolines as a novel class of phosphodiesterase 10A (PDE10A) inhibitors. Bioorg. Med. Chem. Lett. 2011, 21, 3738–3742. [Google Scholar] [CrossRef] [PubMed]
- Alagarsamy, V.; Rupeshkumar, M.; Kavitha, K.; Meena, S.; Shankar, D.; Siddiqui, A.; Rajesh, R. Synthesis and pharmacological investigation of novel 4-(2-methylphenyl)-1-substituted-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-ones as new class of H1-antihistaminic agents. Eur. J. Med. Chem. 2008, 43, 2331–2337. [Google Scholar] [CrossRef] [PubMed]
- Al-Salahi, R.; Geffken, D. Synthesis of novel 2-alkoxy (aralkoxy)-4H-[1, 2, 4] triazolo [1, 5-a] quinazolin-5-ones starting with dialkyl-N-cyanoimidocarbonates. J. Heterocycl. Chem. 2011, 48, 656–662. [Google Scholar] [CrossRef]
- Al-Salahi, R.A.; Geffken, D.; Al-Salahi, R. Synthesis and Reactivity of [1, 2, 4] Triazolo-annelated Quinazolines. Molecules 2010, 15, 7016–7034. [Google Scholar] [CrossRef]
- Al-Salahi, R.; Marzouk, M. Synthesis of novel 2-phenoxybenzo [g][1, 2, 4] triazolo [1, 5-a] quinazoline and its derivatives starting with diphenyl-N-cyanoimidocarbonate. Russ. J. Gen. Chem. 2016, 86, 1741–1746. [Google Scholar] [CrossRef]
- Maloney, A.G.; Wood, P.A.; Parsons, S. Intermolecular interaction energies in transition metal coordination compounds. CrystEngComm 2015, 17, 9300–9310. [Google Scholar] [CrossRef]
- Turner, M.J.; Grabowsky, S.; Jayatilaka, D.; Spackman, M.A. Accurate and Efficient Model Energies for Exploring Intermolecular Interactions in Molecular Crystals. J. Phys. Chem. Lett. 2014, 5, 4249–4255. [Google Scholar] [CrossRef]
- Mackenzie, C.F.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer model energies and energy frameworks: Extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ 2017, 4, 575–587. [Google Scholar] [CrossRef]
- Spackman, M.A.; Byrom, P.G. A novel definition of a molecule in a crystal. Chem. Phys. Lett. 1997, 267, 215–220. [Google Scholar] [CrossRef]
- Kumara, K.; Jyothi, M.; Kouser, S.; Kumar, A.U.; Warad, I.; Khanum, S.A.; Lokanath, N.K. Structural investigations and theoretical insights of a polymethoxy chalcone derivative: Synthesis, crystal structure, 3D energy frameworks and SARS CoV-2 docking studies. J. Mol. Struct. 2023, 1272, 134226. [Google Scholar] [CrossRef]
- Spackman, P.R.; Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer: A program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 2021, 54, 1006–1011. [Google Scholar] [CrossRef] [PubMed]
- Spackman, M.A.; McKinnon, J.J. Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm 2002, 4, 378–392. [Google Scholar] [CrossRef]
- Spackman, M.A.; Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 2009, 11, 19–32. [Google Scholar] [CrossRef]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef]
- Tan, S.L.; Jotani, M.M.; Tiekink, E.R. Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr. Sect. E Crystallogr. Commun. 2019, 75, 308–318. [Google Scholar] [CrossRef]
- Kamat, V.; Kumara, K.; Naik, K.; Kotian, A.; Netalkar, P.; Shivalingegowda, N.; Neratur, K.L.; Revankar, V. [Dichlorido (2-(2-(1H-benzo [d] thiazol-2-yl) hydrazono) propan-1-ol) Cu (II)]: Crystal structure, Hirshfeld surface analysis and correlation of its ESI-MS behavior with [Dichlorido 3-(hydroxyimino)-2-butanone-2-(1H-benzo [d] thiazol-2-yl) hydrazone Cu (II)]. J. Mol. Struct. 2017, 1149, 357–366. [Google Scholar]
- Frisch, M.J.T.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision D.01; Gaussian Inc.: Wallingford, CT, USA, 2009; Volume 121, pp. 150–166. [Google Scholar]
- Dennington, R.; Keith, T.; Millam, J. GaussView, Version; Semichem Inc.: Shawnee, KS, USA, 2016; Volume 6. [Google Scholar]
- Koopmans, T. Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica 1934, 1, 104–113. [Google Scholar] [CrossRef]
- Brandenburg, K. Diamond; Crystal Impact GbR: Bonn, Germany, 2006. [Google Scholar]
- Kargar, H.; Fallah-Mehrjardi, M.; Ashfaq, M.; Munawar, K.S.; Tahir, M.N.; Behjatmanesh-Ardakani, R.; Rudbari, H.A.; Ardakani, A.A.; Sedighi-Khavidak, S. Zn (II) complexes containing O, N, N, O-donor Schiff base ligands: Synthesis, crystal structures, spectral investigations, biological activities, theoretical calculations and substitution effect on structures. J. Coord. Chem. 2021, 74, 2720–2740. [Google Scholar] [CrossRef]
- Ramalingam, A.; Kansız, S.; Dege, N.; Sambandam, S. Synthesis, crystal structure, DFT calculations and Hirshfeld surface analysis of 3-chloro-2, 6-bis (4-chlorophenyl)-3-methylpiperidin-4-one. J. Chem. Crystallogr. 2021, 51, 273–287. [Google Scholar] [CrossRef]
- Ashfaq, M.; Munawar, K.S.; Tahir, M.N.; Dege, N.; Yaman, M.; Muhammad, S.; Alarfaji, S.S.; Kargar, H.; Arshad, M.U. Synthesis, crystal structure, Hirshfeld surface analysis, and computational study of a novel organic salt obtained from benzylamine and an acidic component. ACS Omega 2021, 6, 22357–22366. [Google Scholar] [CrossRef] [PubMed]
- McKinnon, J.J.; Mitchell, A.S.; Spackman, M.A. Hirshfeld surfaces: A new tool for visualising and exploring molecular crystals. Chem.–Eur. J. 1998, 4, 2136–2141. [Google Scholar] [CrossRef]
- Bakheit, A.H.; Attwa, M.W.; Kadi, A.A.; Ghabbour, H.A.; Alkahtani, H.M. Exploring the Chemical Reactivity, Molecular Docking, Molecular Dynamic Simulation and ADMET Properties of a Tetrahydrothienopyridine Derivative Using Computational Methods. Crystals 2023, 13, 1020. [Google Scholar] [CrossRef]
- Bakheit, A.H.; Abuelizz, H.A.; Al-Salahi, R. A DFT Study and Hirshfeld Surface Analysis of the Molecular Structures, Radical Scavenging Abilities and ADMET Properties of 2-Methylthio(methylsulfonyl)-[1,2,4]triazolo [1,5-a]quinazolines: Guidance for Antioxidant Drug Design. Crystals 2023, 13, 1086. [Google Scholar] [CrossRef]
- Bakheit, A.H.; Al-Salahi, R.; Ghabbour, H.A.; Ali, E.A.; AlRuqi, O.S.; Mostafa, G.A.E. Synthesis, X-ray Crystal Structure, and Computational Characterization of Tetraphenylborate, 3-(5H-Dibenzo[a,d] cyclohepten-5-ylidene)-N, N-Dimethyl-1-propanamine. Crystals 2023, 13, 1088. [Google Scholar] [CrossRef]
- Ashfaq, M.; Tahir, M.N.; Muhammad, S.; Munawar, K.S.; Ali, A.; Bogdanov, G.; Alarfaji, S.S. Single-crystal investigation, Hirshfeld surface analysis, and DFT study of third-order NLO properties of unsymmetrical acyl thiourea derivatives. ACS Omega 2021, 6, 31211–31225. [Google Scholar] [CrossRef]
- McKinnon, J.J.; Jayatilaka, D.; Spackman, M.A. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun. 2007, 7, 3814–3816. [Google Scholar] [CrossRef]
- Kumar, R.; Kamal, R.; Kumar, V.; Parkash, J. Bifunctionalization of α,β-unsaturated diaryl ketones into α-aryl-β,β-ditosyloxy ketones: Single crystal XRD, DFT, FMOs, molecular electrostatic potential, hirshfeld surface analysis, and 3D-energy frameworks. J. Mol. Struct. 2022, 1250, 131754. [Google Scholar] [CrossRef]
- Fleming, I. Frontier Orbitals and Organic Chemical Reactions; Wiley: Hoboken, NJ, USA, 1976. [Google Scholar]
- Bakheit, A.H.; Attwa, M.W.; Kadi, A.A.; Alkahtani, H.M. Structural Analysis and Reactivity Insights of (E)-Bromo-4-((4-((1-(4-chlorophenyl)ethylidene)amino)-5-phenyl-4H-1,2,4-triazol-3-yl)thio)-5-((2-isopropylcyclohexyl)oxy) Furan-2(5H)-one: A Combined Approach Using Single-Crystal X-ray Diffraction, Hirshfeld Surface Analysis, and Conceptual Density Functional Theory. Crystals 2023, 13, 1313. [Google Scholar]
- Bradley, J.; Gerrans, G. Frontier molecular orbitals. A link between kinetics and bonding theory. J. Chem. Educ. 1973, 50, 463. [Google Scholar] [CrossRef]
- Wang, J.; Gu, J.; Leszczynski, J. Theoretical study of absorption and emission spectra of the monomer of PFBT. Chem. Phys. Lett. 2008, 456, 206–210. [Google Scholar] [CrossRef]
- Wang, J.; Gu, J.; Leszczynski, J. Effect of stacking interactions on the spectra of the monomer of PFBT: A theoretical study. J. Phys. Chem. A 2009, 113, 10224–10230. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gu, J.; Leszczynski, J. The electronic spectra of the sandwich stacked PFBT: A theoretical study. J. Phys. Chem. A 2011, 115, 6376–6382. [Google Scholar] [CrossRef] [PubMed]
- Bamgbelu, A.; Wang, J.; Leszczynski, J. TDDFT study of the optical properties of Cy5 and its derivatives. J. Phys. Chem. A 2010, 114, 3551–3555. [Google Scholar] [CrossRef] [PubMed]
- Arulaabaranam, K.; Muthu, S.; Mani, G.; Geoffrey, A.B. Speculative assessment, molecular composition, PDOS, topology exploration (ELF, LOL, RDG), ligand-protein interactions, on 5-bromo-3-nitropyridine-2-carbonitrile. Heliyon 2021, 7, e07061. [Google Scholar] [CrossRef] [PubMed]
- Pullman, A.; Pullman, B. Molecular electrostatic potential of the nucleic acids. Q. Rev. Biophys. 1981, 14, 289–380. [Google Scholar] [CrossRef]
- Pèpe, G.; Siri, D.; Reboul, J.-P. The molecular electrostatic potential and drug design. J. Mol. Struct. THEOCHEM 1992, 256, 175–185. [Google Scholar] [CrossRef]
Length/Å | ||||
---|---|---|---|---|
Atom | SC-XRD | DFT | Absolute Error (AE) | Square Absolute Error (SAE) |
O1—C7 | 1.223(2) | 1.258 | 0.035 | 0.001 |
O2—C9 | 1.339(2) | 1.43 | 0.091 | 0.008 |
O2—C10 | 1.450(2) | 1.43 | 0.02 | 0 |
N1—C7 | 1.397(2) | 1.473 | 0.076 | 0.006 |
N1—C8 | 1.364(2) | 1.342 | 0.022 | 0 |
N2—N3 | 1.391(2) | 1.399 | 0.008 | 0 |
N2—C1 | 1.396(2) | 1.467 | 0.071 | 0.005 |
N2—C8 | 1.351(2) | 1.336 | 0.015 | 0 |
N3—C9 | 1.320(2) | 1.296 | 0.024 | 0.001 |
N4—C8 | 1.333(2) | 1.293 | 0.04 | 0.002 |
N4—C9 | 1.380(2) | 1.473 | 0.093 | 0.009 |
C1—C2 | 1.394(3) | 1.4 | 0.006 | 0 |
C1—C6 | 1.399(3) | 1.394 | 0.005 | 0 |
C2—C3 | 1.381(3) | 1.403 | 0.022 | 0 |
C3—C4 | 1.392(3) | 1.405 | 0.013 | 0 |
C4—C5 | 1.387(3) | 1.403 | 0.016 | 0 |
C5—C6 | 1.401(3) | 1.4 | 0.001 | 0 |
C6—C7 | 1.479(3) | 1.539 | 0.06 | 0.004 |
C10—C11 | 1.500(3) | 1.54 | 0.04 | 0.002 |
C11—C12 | 1.379(5) | 1.401 | 0.022 | 0.001 |
C11—C16 | 1.465(4) | 1.401 | 0.064 | 0.004 |
C12—C13 | 1.385(6) | 1.401 | 0.016 | 0 |
C13—C14 | 1.281(5) | 1.401 | 0.12 | 0.014 |
C14—C15 | 1.435(5) | 1.401 | 0.034 | 0.001 |
C15—C16 | 1.393(6) | 1.401 | 0.008 | 0 |
Mean | 0.037 | 0.002 |
Angle/° | ||||
---|---|---|---|---|
Atoms | SC-XRD | DFT | Absolute Error (AE) | Square Absolute Error (SAE) |
C9—O2—C10 | 115.94(15) | 109.471 | 6.469 | 41.845 |
C8—N1—C7 | 122.56(16) | 118.776 | 3.784 | 14.317 |
N3—N2—C1 | 125.89(16) | 126.335 | 0.445 | 0.198 |
C8—N2—N3 | 109.78(16) | 110.4 | 0.62 | 0.384 |
C8—N2—C1 | 124.32(16) | 123.265 | 1.055 | 1.113 |
C9—N3—N2 | 100.65(15) | 104.677 | 4.027 | 16.214 |
C8—N4—C9 | 100.89(16) | 104.738 | 3.848 | 14.806 |
N2—C1—C6 | 116.03(17) | 117.84 | 1.81 | 3.277 |
C2—C1—N2 | 122.16(18) | 121.748 | 0.412 | 0.17 |
C2—C1—C6 | 121.80(19) | 120.412 | 1.388 | 1.928 |
C3—C2—C1 | 118.12(19) | 119.567 | 1.447 | 2.095 |
C2—C3—C4 | 121.51(19) | 120.038 | 1.472 | 2.167 |
C5—C4—C3 | 119.9(2) | 120.047 | 0.147 | 0.022 |
C4—C5—C6 | 120.09(19) | 119.586 | 0.504 | 0.254 |
C1—C6—C5 | 118.57(18) | 120.35 | 1.78 | 3.169 |
C1—C6—C7 | 121.65(18) | 117.977 | 3.673 | 13.49 |
C5—C6—C7 | 119.78(18) | 121.673 | 1.893 | 3.583 |
O1—C7—N1 | 120.98(18) | 120.867 | 0.113 | 0.013 |
O1—C7—C6 | 123.46(19) | 120.867 | 2.593 | 6.726 |
N1—C7—C6 | 115.55(17) | 118.267 | 2.717 | 7.38 |
N2—C8—N1 | 119.84(18) | 123.875 | 4.035 | 16.28 |
N4—C8—N1 | 128.80(17) | 125.998 | 2.802 | 7.849 |
N4—C8—N2 | 111.34(16) | 110.127 | 1.213 | 1.472 |
O2—C9—N4 | 124.51(17) | 124.971 | 0.461 | 0.212 |
N3—C9—O2 | 118.13(17) | 124.971 | 6.841 | 46.794 |
N3—C9—N4 | 117.35(18) | 110.059 | 7.291 | 53.162 |
O2—C10—C11 | 108.60(16) | 109.471 | 0.871 | 0.759 |
C12—C11—C10 | 122.8(2) | 120 | 2.8 | 7.84 |
C12—C11—C16 | 114.3(3) | 120 | 5.7 | 32.49 |
C16—C11—C10 | 122.9(2) | 120 | 2.9 | 8.41 |
C11—C12—C13 | 124.5(4) | 120 | 4.5 | 20.25 |
C14—C13—C12 | 119.5(4) | 120 | 0.5 | 0.25 |
C13—C14—C15 | 123.7(3) | 120 | 3.7 | 13.69 |
C16—C15—C14 | 116.6(4) | 120 | 3.4 | 11.56 |
C15—C16—C11 | 121.4(4) | 120 | 1.4 | 1.96 |
Mean | 2.532 | 10.175 |
D H A | d(D-H)/Å | d(H-A)/Å | d(D-A)/Å | D-H-A/° | Symmetry Codes |
---|---|---|---|---|---|
N1-H1⋯N4 | 0.88 | 2.19 | 3.058(2) | 169 | 1-X,2-Y,1-Z |
N | Symop | R | Electron Density | Eele | Epol | Edis | Erep | Etot |
---|---|---|---|---|---|---|---|---|
2 | x, y, z | 5.03 | B3LYP/6-31G(d,p) | −6.7248 | −1.8926 | −51.1092 | 25.2217 | −37.4370 |
2 | −x + 1/2, y + 1/2, −z + 1/2 | 14.25 | B3LYP/6-31G(d,p) | −4.0063 | −1.0623 | −10.0944 | 0.0000 | −13.8121 |
1 | −x, −y, −z | 6.29 | B3LYP/6-31G(d,p) | −84.1110 | −20.0291 | −40.2418 | 89.8677 | −83.2813 |
1 | −x, −y, −z | 5.18 | B3LYP/6-31G(d,p) | −4.6088 | −2.8950 | −62.5574 | 34.0563 | −40.4533 |
2 | −x + 1/2, y + 1/2, −z + 1/2 | 14.42 | B3LYP/6-31G(d,p) | 1.9383 | −0.5311 | −8.4207 | 0.0000 | −5.6763 |
2 | x + 1/2, −y + 1/2, z + 1/2 | 13.36 | B3LYP/6-31G(d,p) | −1.6102 | −48.3443 | −19.5309 | 0.0000 | −54.4800 |
1 | −x, −y, −z | 4.87 | B3LYP/6-31G(d,p) | −8.3637 | −1.1691 | −56.4690 | 45.2188 | −30.9495 |
1 | −x, −y, −z | 6.78 | B3LYP/6-31G(d,p) | −26.7267 | −7.5670 | −39.7060 | 44.5276 | −40.9283 |
Summation | −134.21 | −83.49 | −288.13 | 238.89 | −307.02 |
No. | Energy (eV) | Wavelength (nm) | Osc. Strength | Symmetry | Major Contributions | Minor Contributions |
---|---|---|---|---|---|---|
1 | 4.01 | 309.2 | 0.0766 | Singlet-A | HOMO→LUMO (96%) | H-4→L + 1 (3%) |
2 | 4.61 | 269.2 | 0.0944 | Singlet-A | HOMO→L + 1 (83%) | H-4→LUMO (4%), H-3→LUMO (8%), H-1→LUMO (3%) |
4 | 4.80 | 258.1 | 0.0315 | Singlet-A | H-3→LUMO (25%), H-1→LUMO (56%) | H-5→LUMO (5%), H-4→L + 1 (3%), H-2→LUMO (2%), HOMO→L + 1 (7%) |
10 | 5.39 | 229.9 | 0.0223 | Singlet-A | H-1→L + 1 (67%) | H-4→LUMO (7%), H-3→L + 1 (7%), H-2→L + 2 (7%), H-1→L + 3 (7%) |
Parameters | Value (eV) |
---|---|
EHOMO | −6.328 |
ELUMO | −1.757 |
band gap (ΔE) | 4.571 |
ionization energy (IP) | 6.328 |
electron affinity (EA) | 1.757 |
electronegativity (X) | 4.0425 |
chemical hardness (η) | 2.2855 |
chemical potential (μ) | −4.0425 |
chemical softness (σ) | 0.218771 |
global electrophilicity (ω) | 3.575105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakheit, A.H.; Abuelizz, H.A.; Al-Salahi, R. Hirshfeld Surface Analysis and Density Functional Theory Calculations of 2-Benzyloxy-1,2,4-triazolo[1,5-a] quinazolin-5(4H)-one: A Comprehensive Study on Crystal Structure, Intermolecular Interactions, and Electronic Properties. Crystals 2023, 13, 1410. https://doi.org/10.3390/cryst13101410
Bakheit AH, Abuelizz HA, Al-Salahi R. Hirshfeld Surface Analysis and Density Functional Theory Calculations of 2-Benzyloxy-1,2,4-triazolo[1,5-a] quinazolin-5(4H)-one: A Comprehensive Study on Crystal Structure, Intermolecular Interactions, and Electronic Properties. Crystals. 2023; 13(10):1410. https://doi.org/10.3390/cryst13101410
Chicago/Turabian StyleBakheit, Ahmed H., Hatem A. Abuelizz, and Rashad Al-Salahi. 2023. "Hirshfeld Surface Analysis and Density Functional Theory Calculations of 2-Benzyloxy-1,2,4-triazolo[1,5-a] quinazolin-5(4H)-one: A Comprehensive Study on Crystal Structure, Intermolecular Interactions, and Electronic Properties" Crystals 13, no. 10: 1410. https://doi.org/10.3390/cryst13101410
APA StyleBakheit, A. H., Abuelizz, H. A., & Al-Salahi, R. (2023). Hirshfeld Surface Analysis and Density Functional Theory Calculations of 2-Benzyloxy-1,2,4-triazolo[1,5-a] quinazolin-5(4H)-one: A Comprehensive Study on Crystal Structure, Intermolecular Interactions, and Electronic Properties. Crystals, 13(10), 1410. https://doi.org/10.3390/cryst13101410