Two-Dimensional Metal–Organic Framework TM Catalysts for Electrocatalytic N2 and CO2 Reduction: A Density Functional Theory Investigation
Abstract
:1. Introduction
2. Calculation Methods
3. Results and Discussion
3.1. Adsorption Behaviors of N2 and CO2 on the 2D MOF-TM Surface
3.2. Electrocatalytic Processes and Mechanisms for NRR and CO2RR
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, Q.; Lei, Y.; Wang, D.; Li, Y. Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction. Energy Environ. Sci. 2019, 12, 1730–1750. [Google Scholar] [CrossRef]
- Xue, X.; Chen, R.; Yan, C.; Zhao, P.; Hu, Y.; Zhang, W.; Yang, S.; Jin, Z. Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: Advances, challenges and perspectives. Nano Res. 2019, 12, 1229–1249. [Google Scholar] [CrossRef]
- Zhao, S.; Lu, X.; Wang, L.; Gale, J.; Amal, R. Carbon-Based Metal-Free Catalysts for Electrocatalytic Reduction of Nitrogen for Synthesis of Ammonia at Ambient Conditions. Adv. Mater. 2019, 31, 1805367. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, Y.; Ma, L.; Zhu, G.; Wang, Y.; Xue, X.; Chen, R.; Yang, S.; Jin, Z. Progress and Perspective of Electrocatalytic CO2 Reduction for Renewable Carbonaceous Fuels and Chemicals. Adv. Sci. 2018, 5, 1700275. [Google Scholar] [CrossRef]
- Wang, G.; Chen, J.; Ding, Y.; Cai, P.; Yi, L.; Li, Y.; Tu, C.; Hou, Y.; Wen, Z.; Dai, L. Electrocatalysis for CO2 conversion: From fundamentals to value-added products. Chem. Soc. Rev. 2021, 50, 4993–5061. [Google Scholar] [CrossRef]
- Yang, D.-R.; Liu, L.; Zhang, Q.; Shi, Y.; Zhou, Y.; Liu, C.; Wang, F.-B.; Xia, X.-H. Importance of Au nanostructures in CO2 electrochemical reduction reaction. Sci. Bull. 2020, 65, 796–802. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.H.; Zhang, S.N.; Lin, Y.X.; Su, H.; Zhai, G.Y.; Han, J.T.; Yu, Q.Y.; Li, X.H.; Antonietti, M.; Chen, J.S. Electrochemical Reduction of N2 into NH3 by Donor-Acceptor Couples of Ni and Au Nanoparticles with a 67.8% Faradaic Efficiency. J. Am. Chem. Soc. 2019, 141, 14976–14980. [Google Scholar] [CrossRef]
- Iqbal, M.; Bando, Y.; Sun, Z.; Wu, K.C.; Rowan, A.E.; Na, J.; Guan, B.Y.; Yamauchi, Y. In Search of Excellence: Convex versus Concave Noble Metal Nanostructures for Electrocatalytic Applications. Adv. Mater. 2021, 33, e2004554. [Google Scholar] [CrossRef]
- Chen, D.; Zhu, J.; Pu, Z.; Mu, S. Anion Modulation of Pt-Group Metals and Electrocatalysis Applications. Chemistry 2021, 27, 12257–12271. [Google Scholar] [CrossRef]
- Liu, J.; Ma, Q.; Huang, Z.; Liu, G.; Zhang, H. Recent Progress in Graphene-Based Noble-Metal Nanocomposites for Electrocatalytic Applications. Adv. Mater. 2019, 31, e1800696. [Google Scholar] [CrossRef]
- Chao, T.; Hu, Y.; Hong, X.; Li, Y. Design of Noble Metal Electrocatalysts on an Atomic Level. ChemElectroChem 2019, 6, 289–303. [Google Scholar] [CrossRef]
- Lü, F.; Bao, H.; Mi, Y.; Liu, Y.; Sun, J.; Peng, X.; Qiu, Y.; Zhuo, L.; Liu, X.; Luo, J. Electrochemical CO2 reduction: From nanoclusters to single atom catalysts. Sustain. Energy Fuels 2020, 4, 1012–1028. [Google Scholar] [CrossRef]
- Liu, J.-Y.; Gong, X.-Q.; Li, R.; Shi, H.; Cronin, S.B.; Alexandrova, A.N. (Photo)Electrocatalytic CO2 Reduction at the Defective Anatase TiO2 (101) Surface. ACS Catal. 2020, 10, 4048–4058. [Google Scholar] [CrossRef]
- Wu, T.; Kong, W.; Zhang, Y.; Xing, Z.; Zhao, J.; Wang, T.; Shi, X.; Luo, Y.; Sun, X. Greatly Enhanced Electrocatalytic N2 Reduction on TiO2 via V Doping. Small Methods 2019, 3, 1900356. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, K.; Pan, Q.; Xu, Y.; Liu, Q.; Cui, G.; Guo, X.; Sun, X. Boron-Doped TiO2 for Efficient Electrocatalytic N2 Fixation to NH3 at Ambient Conditions. ACS Sustain. Chem. Eng. 2018, 7, 117–122. [Google Scholar] [CrossRef]
- Kong, W.; Zhang, R.; Zhang, X.; Ji, L.; Yu, G.; Wang, T.; Luo, Y.; Shi, X.; Xu, Y.; Sun, X. WO3 nanosheets rich in oxygen vacancies for enhanced electrocatalytic N2 reduction to NH3. Nanoscale 2019, 11, 19274–19277. [Google Scholar] [CrossRef] [PubMed]
- Mendieta-Reyes, N.E.; Díaz-García, A.K.; Gómez, R. Simultaneous Electrocatalytic CO2 Reduction and Enhanced Electrochromic Effect at WO3 Nanostructured Electrodes in Acetonitrile. ACS Catal. 2018, 8, 1903–1912. [Google Scholar] [CrossRef]
- Chu, K.; Liu, Y.; Li, Y.-b.; Guo, Y.; Tian, Y.; Zhang, H. Multi-functional Mo-doping in MnO2 nanoflowers toward efficient and robust electrocatalytic nitrogen fixation. Appl. Catal. B Environ. 2020, 264, 118525. [Google Scholar] [CrossRef]
- Huang, T.; Liu, Z.; Zhang, Y.; Wang, F.; Wen, J.; Wang, C.; Hossain, M.; Xie, Q.; Yao, S.; Wu, Y. Promoting electrocatalytic nitrogen reduction to ammonia via Fe-boosted nitrogen activation on MnO2 surfaces. J. Mater. Chem. A 2020, 8, 13679–13684. [Google Scholar] [CrossRef]
- Peng, X.; Chen, Y.; Mi, Y.; Zhuo, L.; Qi, G.; Ren, J.; Qiu, Y.; Liu, X.; Luo, J. Efficient Electroreduction CO2 to CO over MnO2 Nanosheets. Inorg. Chem. 2019, 58, 8910–8914. [Google Scholar] [CrossRef]
- Yan, X.; Chen, C.; Wu, Y.; Liu, S.; Chen, Y.; Feng, R.; Zhang, J.; Han, B. Efficient electroreduction of CO2 to C2+ products on CeO2 modified CuO. Chem. Sci. 2021, 12, 6638–6645. [Google Scholar] [CrossRef] [PubMed]
- Fu, W.; Cao, Y.; Feng, Q.; Smith, W.R.; Dong, P.; Ye, M.; Shen, J. Pd-Co nanoalloys nested on CuO nanosheets for efficient electrocatalytic N2 reduction and room-temperature Suzuki-Miyaura coupling reaction. Nanoscale 2019, 11, 1379–1385. [Google Scholar] [CrossRef] [PubMed]
- Yaghi, O.M.; Li, G.; Li, H. Selective binding and removal of guests in a microporous metal-organic framework. Nature 1995, 378, 703–706. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, W.; Du, H.; Kong, R.-M.; Qu, F. A Co-MOF nanosheet array as a high-performance electrocatalyst for the oxygen evolution reaction in alkaline electrolytes. Inorg. Chem. Front. 2018, 5, 344–347. [Google Scholar] [CrossRef]
- Jiang, S.; Li, S.; Xu, Y.; Liu, Z.; Weng, S.; Lin, M.; Xu, Y.; Jiao, Y.; Chen, J. An iron based organic framework coated with nickel hydroxide for energy storage, conversion and detection. J. Colloid. Interface Sci. 2021, 600, 150–160. [Google Scholar] [CrossRef]
- Jahan, M.; Liu, Z.; Loh, K.P. A Graphene Oxide and Copper-Centered Metal Organic Framework Composite as a Tri-Functional Catalyst for HER, OER, and ORR. Adv. Funct. Mater. 2013, 23, 5363–5372. [Google Scholar] [CrossRef]
- Fu, Y.; Li, K.; Batmunkh, M.; Yu, H.; Donne, S.; Jia, B.; Ma, T. Unsaturated p-Metal-Based Metal-Organic Frameworks for Selective Nitrogen Reduction under Ambient Conditions. ACS Appl. Mater. Interfaces 2020, 12, 44830–44839. [Google Scholar] [CrossRef]
- Pan, Y.; Abazari, R.; Wu, Y.; Gao, J.; Zhang, Q. Advances in metal–organic frameworks and their derivatives for diverse electrocatalytic applications. Electrochem. Commun. 2021, 126, 107024. [Google Scholar] [CrossRef]
- Nam, D.H.; Bushuyev, O.S.; Li, J.; De Luna, P.; Seifitokaldani, A.; Dinh, C.T.; Garcia de Arquer, F.P.; Wang, Y.; Liang, Z.; Proppe, A.H.; et al. Metal-Organic Frameworks Mediate Cu Coordination for Selective CO2 Electroreduction. J. Am. Chem. Soc. 2018, 140, 11378–11386. [Google Scholar] [CrossRef]
- Khalil, I.E.; Xue, C.; Liu, W.; Li, X.; Shen, Y.; Li, S.; Zhang, W.; Huo, F. The Role of Defects in Metal–Organic Frameworks for Nitrogen Reduction Reaction: When Defects Switch to Features. Adv. Funct. Mater. 2021, 31, 2010052. [Google Scholar] [CrossRef]
- Zhao, K.; Zhu, W.; Liu, S.; Wei, X.; Ye, G.; Su, Y.; He, Z. Two-dimensional metal–organic frameworks and their derivatives for electrochemical energy storage and electrocatalysis. Nanoscale Adv. 2020, 2, 536–562. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Li, Y.; Gao, J. Two-dimensional Metal-organic Frameworks and Derivatives for Electrocatalysis. Chem. Res. Chin. Univ. 2020, 36, 662–679. [Google Scholar] [CrossRef]
- Li, F.L.; Wang, P.; Huang, X.; Young, D.J.; Wang, H.F.; Braunstein, P.; Lang, J.P. Large-Scale, Bottom-Up Synthesis of Binary Metal-Organic Framework Nanosheets for Efficient Water Oxidation. Angew. Chem. Int. Ed. Engl. 2019, 58, 7051–7056. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lin, S.; Wang, D.; Gao, T.; Song, J.; Zhou, P.; Xu, Z.; Yang, Z.; Xiao, N.; Guo, S. Single Atom Array Mimic on Ultrathin MOF Nanosheets Boosts the Safety and Life of Lithium-Sulfur Batteries. Adv. Mater. 2020, 32, e1906722. [Google Scholar] [CrossRef]
- Cui, Q.; Qin, G.; Wang, W.; Geethalakshmi, K.R.; Du, A.; Sun, Q. Mo-based 2D MOF as a highly efficient electrocatalyst for reduction of N2 to NH3: A density functional theory study. J. Mater. Chem. A 2019, 7, 14510–14518. [Google Scholar] [CrossRef]
- Li, W.; Fang, W.; Wu, C.; Dinh, K.N.; Ren, H.; Zhao, L.; Liu, C.; Yan, Q. Bimetal–MOF nanosheets as efficient bifunctional electrocatalysts for oxygen evolution and nitrogen reduction reaction. J. Mater. Chem. A 2020, 8, 3658–3666. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, L.; Yang, D.; Yang, H.; Lu, Q.; Zhang, Q.; Gu, L.; Wang, X. Enhancing CO2 Electrocatalysis on 2D Porphyrin-Based Metal–Organic Framework Nanosheets Coupled with Visible-Light. Small Methods 2020, 5, 2000991. [Google Scholar] [CrossRef]
- Yuan, M.; Wang, R.; Fu, W.; Lin, L.; Sun, Z.; Long, X.; Zhang, S.; Nan, C.; Sun, G.; Li, H.; et al. Ultrathin Two-Dimensional Metal-Organic Framework Nanosheets with the Inherent Open Active Sites as Electrocatalysts in Aprotic Li-O2 Batteries. ACS Appl. Mater. Interfaces 2019, 11, 11403–11413. [Google Scholar] [CrossRef]
- Jones, R.O. Density functional theory: Its origins, rise to prominence, and future. Rev. Mod. Phys. 2015, 87, 897–923. [Google Scholar] [CrossRef]
- Wei, Y.; Xing, G.; Liu, K.; Li, G.; Dang, P.; Liang, S.; Liu, M.; Cheng, Z.; Jin, D.; Lin, J. New strategy for designing orangish-red-emitting phosphor via oxygen-vacancy-induced electronic localization. Light. Sci. Appl. 2019, 8, 15. [Google Scholar] [CrossRef]
- Vitos, L.; Kollar, J.; Skriver, H.L. Local density approximation versus generalized gradient approximation: Full charge density study of the atomic volume of the light actinides. J. Alloys Compd. 1998, 271, 339–341. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Blochl, P.E. Projector augmented-wave method. Phys. Rev. B Condens. Matter 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed]
- Burke, K.; Perdew, J.P.; Levy, M. Improving energies by using exact electron densities. Phys. Rev. A 1996, 53, R2915–R2917. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Goddard, W.A. The extended Perdew-Burke-Ernzerhof functional with improved accuracy for thermodynamic and electronic properties of molecular systems. J. Chem. Phys. 2004, 121, 4068–4082. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef]
- Wu, X.; Vargas, M.C.; Nayak, S.; Lotrich, V.; Scoles, G. Towards extending the applicability of density functional theory to weakly bound systems. J. Chem. Phys. 2001, 115, 8748–8757. [Google Scholar] [CrossRef]
- Li, Y.; Su, H.; Chan, S.H.; Sun, Q. CO2 Electroreduction Performance of Transition Metal Dimers Supported on Graphene: A Theoretical Study. ACS Catal. 2015, 5, 6658–6664. [Google Scholar] [CrossRef]
- Xu, H.; Guan, D.; Ma, L. The bio-inspired heterogeneous single-cluster catalyst Ni100-Fe4S4 for enhanced electrochemical CO2 reduction to CH4. Nanoscale 2023, 15, 2756–2766. [Google Scholar] [CrossRef]
- Xiao, W.; Kiran, G.K.; Yoo, K.; Kim, J.H.; Xu, H. The Dual-Site Adsorption and High Redox Activity Enabled by Hybrid Organic-Inorganic Vanadyl Ethylene Glycolate for High-Rate and Long-Durability Lithium-Sulfur Batteries. Small 2023, 19, e2206750. [Google Scholar] [CrossRef]
- Guan, D.; Xu, H.; Zhang, Q.; Huang, Y.C.; Shi, C.; Chang, Y.C.; Xu, X.; Tang, J.; Gu, Y.; Pao, C.W.; et al. Identifying A Universal Activity Descriptor and a Unifying Mechanism Concept on Perovskite Oxides for Green Hydrogen Production. Adv. Mater. 2023, 2023, e2305074. [Google Scholar] [CrossRef]
- Yang, H.; Luo, D.; Gao, R.; Wang, D.; Li, H.; Zhao, Z.; Feng, M.; Chen, Z. Reduction of N2 to NH3 by TiO2-supported Ni cluster catalysts: A DFT study. Phys. Chem. Chem. Phys. 2021, 23, 16707–16717. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Wu, Z.-Y.; Zhao, L.; Ming, M.; Zhang, Y.; Yi, Y.; Hu, J.-S. Identification of FeN4 as an Efficient Active Site for Electrochemical N2 Reduction. ACS Catal. 2019, 9, 7311–7317. [Google Scholar] [CrossRef]
- Li, X.; Tian, Y.; Wang, X.; Guo, Y.; Chu, K. SnNb2O6 nanosheets for the electrocatalytic NRR: Dual-active-center mechanism of Nb3C and Sn4C–Nb5C dimer. Sustain. Energy Fuels 2021, 5, 4277–4283. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, B.; Sun, B.; Wang, N.; Hu, W.; Komarneni, S. N-Doped Porous Carbon Self-Generated on Nickel Oxide Nanosheets for Electrocatalytic N2 Fixation with a Faradaic Efficiency beyond 30%. ACS Sustain. Chem. Eng. 2019, 7, 18874–18883. [Google Scholar] [CrossRef]
- Luo, L.; Wang, B.; Wang, J.; Niu, X. Vacancy engineering of WO3-X nanosheets for electrocatalytic NRR process—A first-principles study. Phys. Chem. Chem. Phys. 2021, 23, 16658–16663. [Google Scholar] [CrossRef]
- Ren, D.; Fong, J.; Yeo, B.S. The effects of currents and potentials on the selectivities of copper toward carbon dioxide electroreduction. Nat. Commun. 2018, 9, 925. [Google Scholar] [CrossRef]
- Kuhl, K.P.; Cave, E.R.; Abram, D.N.; Jaramillo, T.F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 2012, 5, 7050–7059. [Google Scholar] [CrossRef]
N2* on MOF-TM | Eads (eV) | LN-N (Å) | dTM-N (Å) | ∆q | ∆k (cm−1) |
---|---|---|---|---|---|
Fe | −1.43 | 1.139 | 1.773 | 0.27 | 141 |
Co | −1.11 | 1.135 | 1.758 | 0.21 | 103 |
Ni | −0.64 | 1.126 | 1.812 | 0.09 | 23 |
CO2* on MOF-Fe | −0.44 | LC-O (Å) | dFe-O (Å) | 0.01 | |
1.185/1.172 | 2.100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
She, A.; Wang, M.; Li, S.; Dong, Y.; Wang, D. Two-Dimensional Metal–Organic Framework TM Catalysts for Electrocatalytic N2 and CO2 Reduction: A Density Functional Theory Investigation. Crystals 2023, 13, 1426. https://doi.org/10.3390/cryst13101426
She A, Wang M, Li S, Dong Y, Wang D. Two-Dimensional Metal–Organic Framework TM Catalysts for Electrocatalytic N2 and CO2 Reduction: A Density Functional Theory Investigation. Crystals. 2023; 13(10):1426. https://doi.org/10.3390/cryst13101426
Chicago/Turabian StyleShe, Anqi, Ming Wang, Shuang Li, Yanhua Dong, and Dandan Wang. 2023. "Two-Dimensional Metal–Organic Framework TM Catalysts for Electrocatalytic N2 and CO2 Reduction: A Density Functional Theory Investigation" Crystals 13, no. 10: 1426. https://doi.org/10.3390/cryst13101426
APA StyleShe, A., Wang, M., Li, S., Dong, Y., & Wang, D. (2023). Two-Dimensional Metal–Organic Framework TM Catalysts for Electrocatalytic N2 and CO2 Reduction: A Density Functional Theory Investigation. Crystals, 13(10), 1426. https://doi.org/10.3390/cryst13101426