Enhancing Salt Stress Tolerance in Rye with ZnO Nanoparticles: Detecting H2O2 as a Stress Biomarker by Nanostructured NiO Electrochemical Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis and Analysis of ZnO Nanoparticles
2.3. Synthesis and Analysis of NiO Nanostructures
2.4. Rye Seedling Cultivation and Sample Preparation
2.5. Optical Measurements
2.6. Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hura, T.; Hura, K.; Ostrowska, A. Drought-Stress Induced Physiological and Molecular Changes in Plants. Int. J. Mol. Sci. 2022, 23, 4698. [Google Scholar] [CrossRef]
- Guo, P.-R.; Wu, L.-L.; Wang, Y.; Liu, D.; Li, J.-A. Effects of Drought Stress on the Morphological Structure and Flower Organ Physiological Characteristics of Camellia oleifera Flower Buds. Plants 2023, 12, 2585. [Google Scholar] [CrossRef]
- Ondrasek, G.; Rathod, S.; Manohara, K.K.; Gireesh, C.; Anantha, M.S.; Sakhare, A.S.; Parmar, B.; Yadav, B.K.; Bandumula, N.; Raihan, F.; et al. Salt Stress in Plants and Mitigation Approaches. Plants 2022, 11, 717. [Google Scholar] [CrossRef]
- Chaudhry, U.K.; Gökçe, Z.N.Ö.; Gökçe, A.F. The Influence of Salinity Stress on Plants and Their Molecular Mechanisms. Biol. Life Sci. Forum 2022, 11, 31. [Google Scholar] [CrossRef]
- Sanwong, P.; Sanitchon, J.; Dongsansuk, A.; Jothityangkoon, D. High Temperature Alters Phenology, Seed Development and Yield in Three Rice Varieties. Plants 2023, 12, 666. [Google Scholar] [CrossRef]
- Vasilachi, I.C.; Stoleru, V.; Gavrilescu, M. Analysis of Heavy Metal Impacts on Cereal Crop Growth and Development in Contaminated Soils. Agriculture 2023, 13, 1983. [Google Scholar] [CrossRef]
- Xie, X.; He, Z.; Chen, N.; Tang, Z.; Wang, Q.; Cai, Y. The Roles of Environmental Factors in Regulation of Oxidative Stress in Plant. BioMed Res. Int. 2019, 2019. [Google Scholar] [CrossRef]
- Chaki, M.; Begara-Morales, J.C.; Barroso, J.B. Oxidative Stress in Plants. Antioxidants 2020, 9, 481. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Ashraf, M. Proline Alleviates Abiotic Stress Induced Oxidative Stress in Plants. J. Plant Growth Regul. 2023, 42, 4629–4651. [Google Scholar] [CrossRef]
- Černý, M.; Habánová, H.; Berka, M.; Luklová, M.; Brzobohatý, B. Hydrogen Peroxide: Its Role in Plant Biology and Crosstalk with Signalling Networks. Int. J. Mol. Sci. 2018, 19, 2812. [Google Scholar] [CrossRef]
- Chatgilialoglu, C. Biomarkers of Oxidative and Radical Stress. Biomolecules 2024, 14, 194. [Google Scholar] [CrossRef]
- Rahman, M.; Asaeda, T.; Fukahori, K.; Imamura, F.; Nohara, A.; Matsubayashi, M. Hydrogen Peroxide Measurement Can Be Used to Monitor Plant Oxidative Stress Rapidly Using Modified Ferrous Oxidation Xylenol Orange and Titanium Sulfate Assay Correlation. Int. J. Plant Biol. 2023, 14, 546–557. [Google Scholar] [CrossRef]
- Ferrigo, D.; Scarpino, V.; Vanara, F.; Causin, R.; Raiola, A.; Blandino, M. Influence of H2O2-Induced Oxidative Stress on In Vitro Growth and Moniliformin and Fumonisins Accumulation by Fusarium proliferatum and Fusarium subglutinans. Toxins 2021, 13, 653. [Google Scholar] [CrossRef]
- Kumar, H.; Dhalaria, R.; Guleria, S.; Cimler, R.; Sharma, R.; Siddiqui, S.A.; Valko, M.; Nepovimova, E.; Dhanjal, D.S.; Singh, R.; et al. Anti-oxidant potential of plants and probiotic spp. in alleviating oxidative stress induced by H2O2. Biomed. Pharmacother. 2023, 165, 115022. [Google Scholar] [CrossRef]
- Acosta-Motos, J.R.; Ortuño, M.F.; Bernal-Vicente, A.; Diaz-Vivancos, P.; Sanchez-Blanco, M.J.; Hernandez, J.A. Plant Responses to Salt Stress: Adaptive Mechanisms. Agronomy 2017, 7, 18. [Google Scholar] [CrossRef]
- Qamer, Z.; Chaudhary, M.T.; Du, X.; Hinze, L.; Azhar, M.T. Review of oxidative stress and antioxidative defense mechanisms in Gossypium hirsutum L. in response to extreme abiotic conditions. J. Cotton Res. 2021, 4, 9. [Google Scholar] [CrossRef]
- González, E.M. Drought Stress Tolerance in Plants. Int. J. Mol. Sci. 2023, 24, 6562. [Google Scholar] [CrossRef]
- Alkahtani, J.; Dwiningsih, Y. Analysis of Morphological, Physiological, and Biochemical Traits of Salt Stress Tolerance in Asian Rice Cultivars at Seedling and Early Vegetative Stages. Stresses 2023, 3, 717–735. [Google Scholar] [CrossRef]
- Hussein, M.A.A.; Alqahtani, M.M.; Alwutayd, K.M.; Aloufi, A.S.; Osama, O.; Azab, E.S.; Abdelsattar, M.; Hassanin, A.A.; Okasha, S.A. Exploring Salinity Tolerance Mechanisms in Diverse Wheat Genotypes Using Physiological, Anatomical, Agronomic and Gene Expression Analyses. Plants 2023, 12, 3330. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Fujita, M. Plant Responses and Tolerance to Salt Stress: Physiological and Molecular Interventions. Int. J. Mol. Sci. 2022, 23, 4810. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, B.; Zhao, Y.; Luo, L.; Zhang, Y.; Feng, G.; Han, L.; Peng, Y.; Zhang, X. Metabolic Regulation and Lipidomic Remodeling in Relation to Spermidine-induced Stress Tolerance to High Temperature in Plants. Int. J. Mol. Sci. 2022, 23, 12247. [Google Scholar] [CrossRef]
- Li, Q.; Qin, Y.; Hu, X.; Jin, L.; Li, G.; Gong, Z.; Xiong, X.; Wang, W. Physiology and Gene Expression Analysis of Potato (Solanum tuberosum L.) in Salt Stress. Plants 2022, 11, 1565. [Google Scholar] [CrossRef]
- El-Badri, A.M.; Batool, M.; AA Mohamed, I.; Wang, Z.; Khatab, A.; Sherif, A.; Ahmad, H.; Khan, M.N.; Hassan, H.M.; Elrewainy, I.M.; et al. Antioxidative and Metabolic Contribution to Salinity Stress Responses in Two Rapeseed Cultivars during the Early Seedling Stage. Antioxidants 2021, 10, 1227. [Google Scholar] [CrossRef]
- Wang, X.; Mi, S.; Miao, H. Transcriptomic Responses to Chilling Reveal Potential Chilling Tolerance Mechanisms in Cucumber. Int. J. Mol. Sci. 2022, 23, 12834. [Google Scholar] [CrossRef]
- Brenes, M.; Solana, A.; Boscaiu, M.; Fita, A.; Vicente, O.; Calatayud, Á.; Prohens, J.; Plazas, M. Physiological and Biochemical Responses to Salt Stress in Cultivated Eggplant (Solanum melongena L.) and in S. insanum L., a Close Wild Relative. Agronomy 2020, 10, 651. [Google Scholar] [CrossRef]
- Sári, D.; Ferroudj, A.; Abdalla, N.; El-Ramady, H.; Dobránszki, J.; Prokisch, J. Nano-Management Approaches for Salt Tolerance in Plants under Field and In Vitro Conditions. Agronomy 2023, 13, 2695. [Google Scholar] [CrossRef]
- Khalid, M.F.; Iqbal Khan, R.; Jawaid, M.Z.; Shafqat, W.; Hussain, S.; Ahmed, T.; Rizwan, M.; Ercisli, S.; Pop, O.L.; Alina Marc, R. Nanoparticles: The Plant Saviour under Abiotic Stresses. Nanomaterials 2022, 12, 3915. [Google Scholar] [CrossRef]
- Abideen, Z.; Hanif, M.; Munir, N.; Nielsen, B.L. Impact of Nanomaterials on the Regulation of Gene Expression and Metabolomics of Plants under Salt Stress. Plants 2022, 11, 691. [Google Scholar] [CrossRef]
- Rajput, V.D.; Minkina, T.; Kumari, A.; Harish; Singh, V.K.; Verma, K.K.; Mandzhieva, S.; Sushkova, S.; Srivastava, S.; Keswani, C. Coping with the Challenges of Abiotic Stress in Plants: New Dimensions in the Field Application of Nanoparticles. Plants 2021, 10, 1221. [Google Scholar] [CrossRef]
- Wahid, I.; Kumari, S.; Ahmad, R.; Hussain, S.J.; Alamri, S.; Siddiqui, M.H.; Khan, M.I.R. Silver Nanoparticle Regulates Salt Tolerance in Wheat Through Changes in ABA Concentration, Ion Homeostasis, and Defense Systems. Biomolecules 2020, 10, 1506. [Google Scholar] [CrossRef]
- Li, P.; Xia, Y.; Song, K.; Liu, D. The Impact of Nanomaterials on Photosynthesis and Antioxidant Mechanisms in Gramineae Plants: Research Progress and Future Prospects. Plants 2024, 13, 984. [Google Scholar] [CrossRef]
- Lee, J.H.J.; Kasote, D.M. Nano-Priming for Inducing Salinity Tolerance, Disease Resistance, Yield Attributes, and Alleviating Heavy Metal Toxicity in Plants. Plants 2024, 13, 446. [Google Scholar] [CrossRef]
- Singh, A.; Sengar, R.S.; Rajput, V.D.; Minkina, T.; Singh, R.K. Zinc Oxide Nanoparticles Improve Salt Tolerance in Rice Seedlings by Improving Physiological and Biochemical Indices. Agriculture 2022, 12, 1014. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Ahmad, A.; Alshahrani, T.S. Integrative Effects of Zinc Nanoparticle and PGRs to Mitigate Salt Stress in Maize. Agronomy 2023, 13, 1655. [Google Scholar] [CrossRef]
- Rakgotho, T.; Ndou, N.; Mulaudzi, T.; Iwuoha, E.; Mayedwa, N.; Ajayi, R.F. Green-Synthesized Zinc Oxide Nanoparticles Mitigate Salt Stress in Sorghum bicolor. Agriculture 2022, 12, 597. [Google Scholar] [CrossRef]
- Badshah, I.; Mustafa, N.; Khan, R.; Mashwani, Z.-u.-R.; Raja, N.I.; Almutairi, M.H.; Aleya, L.; Sayed, A.A.; Zaman, S.; Sawati, L.; et al. Biogenic Titanium Dioxide Nanoparticles Ameliorate the Effect of Salinity Stress in Wheat Crop. Agronomy 2023, 13, 352. [Google Scholar] [CrossRef]
- Mustafa, N.; Raja, N.I.; Ilyas, N.; Abasi, F.; Ahmad, M.S.; Ehsan, M.; Mehak, A.; Badshah, I.; Proćków, J. Exogenous Application of Green Titanium Dioxide Nanoparticles (TiO2 NPs) to Improve the Germination, Physiochemical, and Yield Parameters of Wheat Plants under Salinity Stress. Molecules 2022, 27, 4884. [Google Scholar] [CrossRef]
- Avestan, S.; Ghasemnezhad, M.; Esfahani, M.; Byrt, C.S. Application of Nano-Silicon Dioxide Improves Salt Stress Tolerance in Strawberry Plants. Agronomy 2019, 9, 246. [Google Scholar] [CrossRef]
- Feng, Y.; Kreslavski, V.D.; Shmarev, A.N.; Ivanov, A.A.; Zharmukhamedov, S.K.; Kosobryukhov, A.; Yu, M.; Allakhverdiev, S.I.; Shabala, S. Effects of Iron Oxide Nanoparticles (Fe3O4) on Growth, Photosynthesis, Antioxidant Activity and Distribution of Mineral Elements in Wheat (Triticum aestivum) Plants. Plants 2022, 11, 1894. [Google Scholar] [CrossRef]
- Gerbreders, V.; Krasovska, M.; Sledevskis, E.; Mihailova, I.; Mizers, V. Co3O4 Nanostructured Sensor for Electrochemical Detection of H2O2 as a Stress Biomarker in Barley: Fe3O4 Nanoparticles-Mediated Enhancement of Salt Stress Tolerance. Micromachines 2024, 15, 311. [Google Scholar] [CrossRef]
- Hassanpouraghdam, M.B.; Vojodi Mehrabani, L.; Bonabian, Z.; Aazami, M.A.; Rasouli, F.; Feldo, M.; Strzemski, M.; Dresler, S. Foliar Application of Cerium Oxide-Salicylic Acid Nanoparticles (CeO2:SA Nanoparticles) Influences the Growth and Physiological Responses of Portulaca oleracea L. under Salinity. Int. J. Mol. Sci. 2022, 23, 5093. [Google Scholar] [CrossRef]
- Alabdallah, N.M.; Alzahrani, H.S. The potential mitigation effect of ZnO nanoparticles on [Abelmoschus esculentus L. Moench] metabolism under salt stress conditions. Saudi. J. Biol. Sci. 2020, 27, 3132–3137. [Google Scholar] [CrossRef]
- Plaksenkova, I.; Kokina, I.; Petrova, A.; Jermaļonoka, M.; Gerbreders, V.; Krasovska, M. The Impact of Zinc Oxide Nanoparticles on Cytotoxicity, Genotoxicity, and miRNA Expression in Barley (Hordeum vulgare L.) Seedlings. Sci. World J. 2020, 2020, 6649746. [Google Scholar] [CrossRef]
- Lalarukh, I.; Zahra, N.; Al Huqail, A.A.; Amjad, S.F.; Al-Dhumri, S.A.; Ghoneim, A.M.; Alshahri, A.H.; Almutari, M.M.; Alhusayni, F.S.; Al-Shammari, W.B.; et al. Environmental Technology & Innovation Exogenously applied ZnO nanoparticles induced salt tolerance in potentially high yielding modern wheat (Triticum aestivum L.) cultivars. Environ. Technol. Innov. 2022, 27, 102799. [Google Scholar] [CrossRef]
- Karimian, Z.; Samiei, L. ZnO nanoparticles efficiently enhance drought tolerance in Dracocephalum kotschyi through altering physiological, biochemical and elemental contents. Front. Plant Sci. 2023, 14, 1063618. [Google Scholar] [CrossRef]
- Praveen Kumar, G.; Maheshwaran, S.; Chen, S.-M.; Akilarasan, M.; Chen, T.-W.; Tseng, T.-W.; Yu, J.; Yu, R. A Facile synthesis of the Nickel Oxide Nanoparticles for the Effective Electrochemical Detection of Hydrogen peroxide in Contact Lens Solution. Int. J. Electrochem. Sci. 2020, 15, 8181–8189. [Google Scholar] [CrossRef]
- Fernández, I.; Carinelli, S.; González-Mora, J.L.; Villalonga, R.; Salazar-Carballo, P.A. Nickel oxide nanoparticles/carbon nanotubes nanocomposite for non-enzymatic determination of hydrogen peroxide. Electroanalysis 2022, 35, 2200192. [Google Scholar] [CrossRef]
- Salazar, P.; Rico, V.; González-Elipe, A.R. Non-enzymatic hydrogen peroxide detection at NiO nanoporous thin film-electrodes prepared by physical vapor deposition at oblique angles. Electrochim. Acta 2017, 235, 534–542. [Google Scholar] [CrossRef]
- Liu, M.; An, M.; Xu, J.; Liu, T.; Wang, L.; Liu, Y.; Zhang, J. Three-dimensional carbon foam supported NiO nanosheets as non-enzymatic electrochemical H2O2 sensors. Appl. Surf. Sci. 2021, 542, 148699. [Google Scholar] [CrossRef]
- An, M.; Liu, M.; Liu, Y. Three-Dimensional Carbon Foam Supported Co3O4/NiO Nanosheets As Non-Enzymatic Electrochemical H2O2 Sensors. ECS Meet. Abstr. 2021, MA2021-01, 1166. [Google Scholar] [CrossRef]
- Medhi, A.; Giri, M.K.; Mohanta, D. Non-enzymatic electrochemical detection of H2O2 using Ni(OH)2 nanoparticles. Mater. Today Proc. 2022, 68, 262–267. [Google Scholar] [CrossRef]
- Teniou, A.; Madi, I.A.; Mouhoub, R.; Marty, J.L.; Rhouati, A. One-Step Chemiluminescent Assay for Hydrogen Peroxide Analysis in Water. Chemosensors 2023, 11, 455. [Google Scholar] [CrossRef]
- Gimeno, M.P.; Mayoral, M.C.; Andrés, J.M. A potentiometric titration for H2O2 determination in the presence of organic compounds. Anal. Methods 2013, 5, 1510. [Google Scholar] [CrossRef]
- Hussein, M.A.; Khan, A.; Alamry, K.A. A highly efficient electrochemical sensor containing polyaniline/cerium oxide nanocomposites for hydrogen peroxide detection. RSC Adv. 2022, 12, 31506–31517. [Google Scholar] [CrossRef]
- Sobahi, N.; Imran, M.; Khan, M.E.; Mohammad, A.; Alam, M.M.; Yoon, T.; Mehedi, I.M.; Hussain, M.A.; Abdulaal, M.J.; Jiman, A.A. Electrochemical Sensing of H2O2 by Employing a Flexible Fe3O4/Graphene/Carbon Cloth as Working Electrode. Materials 2023, 16, 2770. [Google Scholar] [CrossRef]
- Sohrabi, H.; Maleki, F.; Khaaki, P.; Kadhom, M.; Kudaibergenov, N.; Khataee, A. Electrochemical-Based Sensing Platforms for Detection of Glucose and H2O2 by Porous Metal–Organic Frameworks: A Review of Status and Prospects. Biosensors 2023, 13, 347. [Google Scholar] [CrossRef]
- Kader, M.A.; Azmi, N.S.; Kafi, A.K.M.; Hossain, M.S.; Jose, R.; Goh, K.W. Ultrasensitive Nonenzymatic Real-Time Hydrogen Peroxide Monitoring Using Gold Nanoparticle-Decorated Titanium Dioxide Nanotube Electrodes. Biosensors 2023, 13, 671. [Google Scholar] [CrossRef]
- Sun, Y.; He, K.; Zhang, Z.; Zhou, A.; Duan, H. Real-time electrochemical detection of hydrogen peroxide secretion in live cells by Pt nanoparticles decorated graphene–carbon nanotube hybrid paper electrode. Biosens. Bioelectron. 2015, 68, 358–364. [Google Scholar] [CrossRef]
- Zamfir, L.-G.; Jinga, M.L.; Tulea, R.; Vărzaru, G.; Constantin, M.; Răut, I.; Firincă, C.; Jecu, M.-L.; Doni, M.; Gurban, A.-M. Portable Electrochemical System for the Monitoring of Biogenic Amines in Soil as Indicators in Assessment of the Stress in Plant. Chem. Proc. 2023, 13, 2. [Google Scholar] [CrossRef]
- Li, G.; Chen, Y.; Liu, F.; Bi, W.; Wang, C.; Lu, D.; Wen, D. Portable visual and electrochemical detection of hydrogen peroxide release from living cells based on dual-functional Pt-Ni hydrogels. Microsyst. Nanoeng. 2023, 9, 152. [Google Scholar] [CrossRef]
- Mihailova, I.; Krasovska, M.; Sledevskis, E.; Gerbreders, V.; Mizers, V.; Ogurcovs, A. Assessment of Oxidative Stress by Detection of H2O2 in Rye Samples Using a CuO- and Co3O4-Nanostructure-Based Electrochemical Sensor. Chemosensors 2023, 11, 532. [Google Scholar] [CrossRef]
- Trujillo, R.M.; Barraza, D.E.; Zamora, M.L.; Cattani-Scholz, A.; Madrid, R.E. Nanostructures in Hydrogen Peroxide Sensing. Sensors 2021, 21, 2204. [Google Scholar] [CrossRef]
- Shringi, A.K.; Kumar, R.; Dennis, N.F.; Yan, F. Two-Dimensional Tellurium Nanosheets for the Efficient Nonenzymatic Electrochemical Detection of H2O2. Chemosensors 2024, 12, 17. [Google Scholar] [CrossRef]
- Aneesh, P.M.; Vanaja, K.A.; Jayaraj, M.K. Synthesis of ZnO nanoparticles by hydrothermal method. In Proceedings of the Nanophotonic Materials IV, San Diego, CA, USA, 17 September 2007; Volume 6639. [Google Scholar] [CrossRef]
- Abbasi, M.A.; Ibupoto, Z.H.; Hussain, M.; Pozina, G.; Lu, J.; Hultman, L.; Nur, O.; Willander, M. Decoration of ZnO Nanorods with Coral Reefs like NiO Nanostructures by the Hydrothermal Growth Method and Their Luminescence Study. Materials 2014, 7, 430–440. [Google Scholar] [CrossRef]
- Olatunbosun, A.; Nigar, H.; Rovshan, K.; Nurlan, A.; Boyukhanim, J.; Narmina, A.; Ibrahim, A. Comparative impact of nanoparticles on salt resistance of wheat plants. MethodsX 2023, 11, 102371. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef]
Sample | First Leaf Length (cm), Average and Maximal | Total Length of Green Part (cm), Average and Maximal | Fresh Weight of 10 Plants (g) | Dry Weight of 10 Plants (g) | ||
---|---|---|---|---|---|---|
Control | 9 | 10 | 20 | 27 | 1.27 | 0.12 |
NaCl | 8 | 9 | 14 | 19 | 0.7 | 0.10 |
nPs 100 mg·L−1 | 10 | 12 | 21 | 30 | 1.27 | 0.14 |
nPs 50 mg·L−1/NaCl | 9 | 13 | 20 | 25 | 1.28 | 0.14 |
nPs 100 mg·L−1/NaCl | 10 | 13 | 20 | 27 | 1.27 | 0.14 |
Element | Control (w%) | NaCl (w%) | nPs 100 mg·L−1 (w%) | nPs 50 mg·L−1/NaCl (w%) | nPs 100 mg·L−1/NaCl (w%) |
---|---|---|---|---|---|
C | 54.13 | 56.46 | 54.22 | 56.4 | 54.26 |
O | 36.42 | 31.67 | 35.07 | 29.49 | 33.26 |
Na | 0.02 | 1.04 | 0.05 | 0.23 | 0.3 |
Mg | 0.5 | 0.17 | 0.78 | 0.44 | 0.44 |
P | 1.39 | 1.02 | 1.95 | 1.85 | 1.95 |
S | 0.68 | 0.45 | 0.86 | 0.97 | 0.94 |
Cl | 0.26 | 4.36 | 0.39 | 4.37 | 2.83 |
K | 4.9 | 2.64 | 5.21 | 4.88 | 4.65 |
Ca | 1.52 | 2.04 | 1.26 | 1.18 | 1.19 |
Fe | 0.06 | 0.04 | 0.09 | 0.08 | 0.06 |
Cu | 0.12 | 0.11 | 0.12 | 0.11 | 0.12 |
Total | 100 | 100 | 100 | 100 | 100 |
Chl (a), mg·g−1 | Chl (b), mg·g−1 | Chl (total), mg·g−1 | Carot., mg·g−1 | |
---|---|---|---|---|
Control | 0.8049 | 0.2643 | 1.0689 | 0.0443 |
NaCl | 0.3923 | 0.1359 | 0.5280 | 0.0233 |
nPs 100 mg·L−1 | 1.0152 | 0.3357 | 1.3506 | 0.0540 |
nPs 50 mg·L−1/NaCl | 0.7446 | 0.1979 | 0.9424 | 0.0430 |
nPs 100 mg·L−1/NaCl | 0.7715 | 0.2590 | 1.0303 | 0.0441 |
Buffer | Control | NaCl | ||||||
Added (µM) | Found (µM) | Excess (µM) | Added (µM) | Found (µM) | Excess (µM) | Added (µM) | Found (µM) | Excess (µM) |
25 | 25 | 0 | 25 | 53 | 28 | 25 | 389 | 364 |
50 | 50 | 0 | 50 | 80 | 30 | 50 | 465 | 415 |
75 | 75 | 0 | 75 | 105 | 30 | 75 | 526 | 451 |
100 | 100 | 0 | 100 | 148 | 48 | 100 | 608 | 508 |
125 | 125 | 0 | 125 | 172 | 47 | 125 | 638 | 513 |
150 | 150 | 0 | 150 | 199 | 49 | 150 | 673 | 523 |
175 | 175 | 0 | 175 | 226 | 51 | 175 | 703 | 528 |
200 | 200 | 0 | 200 | 255 | 55 | 200 | 727 | 527 |
nPs 100 mg·L−1 | nPs 50 mg·L−1/NaCl | nPs 100 mg·L−1/NaCl | ||||||
Added (µM) | Found (µM) | Excess (µM) | Added (µM) | Found (µM) | Excess (µM) | Added (µM) | Found (µM) | Excess (µM) |
25 | 30 | 5 | 25 | 128 | 103 | 25 | 86 | 61 |
50 | 57 | 7 | 50 | 158 | 108 | 50 | 114 | 64 |
75 | 101 | 26 | 75 | 220 | 145 | 75 | 148 | 73 |
100 | 126 | 26 | 100 | 263 | 163 | 100 | 198 | 98 |
125 | 149 | 24 | 125 | 295 | 170 | 125 | 225 | 100 |
150 | 172 | 22 | 150 | 327 | 177 | 150 | 273 | 123 |
175 | 193 | 18 | 175 | 358 | 183 | 175 | 294 | 119 |
200 | 208 | 8 | 200 | 382 | 182 | 200 | 318 | 118 |
Electrode | Sensitivity | Linear Range | LOD | Reference |
---|---|---|---|---|
NiO NPs/GCE | - | 8.6 nM–433.24 μM | 4.28 nM | [46] |
GCE/CNT-PEI@NiO | 830 mA·M−1·cm −2 | 0.004–0.8 mM | 1.0 μM | [47] |
NiO TF-ITO | 807 mA·M−1·cm−2 | 0.011–2.4 mM | 3.22 μM | [48] |
NiO-NSs/CF-1801/GCE | 23.30 μA·mM−1·cm−2 | 0.20–3.75 mM | 13.03 nM | [49] |
Co3O4/NiO-NSs/CF-1801 | 7.67 mA·mM−1·cm−2 | 0.20–4.00 mM | 5.51 µM | [50] |
Ni(OH)2 nPs | 1660 μA·mM−1·cm−2 | 30–320 μM | 26.4 μM | [51] |
Fe-NiO NW | 15.46 mA·mM−1·cm−2 | 0.025–4.00 mM | 1.59 µM | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerbreders, V.; Krasovska, M.; Sledevskis, E.; Mihailova, I.; Mizers, V.; Keviss, J.; Bulanovs, A. Enhancing Salt Stress Tolerance in Rye with ZnO Nanoparticles: Detecting H2O2 as a Stress Biomarker by Nanostructured NiO Electrochemical Sensor. Crystals 2024, 14, 423. https://doi.org/10.3390/cryst14050423
Gerbreders V, Krasovska M, Sledevskis E, Mihailova I, Mizers V, Keviss J, Bulanovs A. Enhancing Salt Stress Tolerance in Rye with ZnO Nanoparticles: Detecting H2O2 as a Stress Biomarker by Nanostructured NiO Electrochemical Sensor. Crystals. 2024; 14(5):423. https://doi.org/10.3390/cryst14050423
Chicago/Turabian StyleGerbreders, Vjaceslavs, Marina Krasovska, Eriks Sledevskis, Irena Mihailova, Valdis Mizers, Jans Keviss, and Andrejs Bulanovs. 2024. "Enhancing Salt Stress Tolerance in Rye with ZnO Nanoparticles: Detecting H2O2 as a Stress Biomarker by Nanostructured NiO Electrochemical Sensor" Crystals 14, no. 5: 423. https://doi.org/10.3390/cryst14050423
APA StyleGerbreders, V., Krasovska, M., Sledevskis, E., Mihailova, I., Mizers, V., Keviss, J., & Bulanovs, A. (2024). Enhancing Salt Stress Tolerance in Rye with ZnO Nanoparticles: Detecting H2O2 as a Stress Biomarker by Nanostructured NiO Electrochemical Sensor. Crystals, 14(5), 423. https://doi.org/10.3390/cryst14050423